46 research outputs found

    Laser-induced rotation of a levitated sample in vacuum

    Get PDF
    A method of systematically controlling the rotational state of a sample levitated in a high vacuum using the photon pressure is described. A zirconium sphere was levitated in the high-temperature electrostatic levitator and it was rotated by irradiating it with a narrow beam of a high-power laser on a spot off the center of mass. While the laser beam heated the sample, it also rotated the sample with a torque that was proportional both to the laser power and the length of the torque arm. A simple theoretical basis was given and its validity was demonstrated using a solid zirconium sphere at ~2000 K. This method will be useful to systematically control the rotational state of a levitated sample for the containerless materials processing at high temperature

    Noncontact technique for measuring surface tension and viscosity of molten materials using high temperature electrostatic levitation

    Get PDF
    A new, noncontact technique is described which entails simultaneous measurements of the surface tension and the dynamic viscosity of molten materials. In this technique, four steps were performed to achieve the results: (1) a small sample of material was levitated and melted in a high vacuum using a high temperature electrostatic levitator, (2) the resonant oscillation of the drop was induced by applying a low level ac electric field pulse at the drop of resonance frequency, (3) the transient signals which followed the pulses were recorded, and (4) both the surface tension and the viscosity were extracted from the signal. The validity of this technique was demonstrated using a molten tin and a zirconium sample. In zirconium, the measurements could be extended to undercooled states by as much as 300 K. This technique may be used for both molten metallic alloys and semiconductors

    Thermophysical Property Measurements of Refractory Oxide Melts With an Electrostatic Levitation Furnace in the International Space Station

    Get PDF
    Due to their high melting temperatures and the risk of contamination from the crucibles, molten oxides which melting temperatures are above 2000 °C can hardly be processed using conventional methods. This explains that their thermophysical properties are very scarce. Containerless methods with gas flows have been developed and several thermophysical properties such as density, surface tension, and viscosity have been reported. However, the gas flow has detrimental side effects such as deformation of the sample and induction of internal flows in the molten sample, which affect the accuracy of the measurements. The electrostatic levitation furnace onboard the International Space Station (ISS-ELF), which utilizes the Coulomb force to levitate and melt samples in microgravity, has several advantages for thermophysical property measurements of refractory oxide melts. Levitation without a gas flow coupled to a reduced gravity environment minimizes the required levitation (positioning) force and reduces the deformation as well as the internal flow. This report briefly introduces the ISS-ELF facility and the thermophysical property measurement methods. The measured density, surface tension, and viscosity of molten Al2O3 are then presented and compared with the ones obtained by other methods. Finally, the measured data of refractory oxides whose melting temperatures are above 2,400 °C are summarized

    Increased Phosphorylation of Vimentin in Noninfiltrative Meningiomas

    Get PDF
    International audienceBACKGROUND: Tissue invasion or tissue infiltration are clinical behaviors of a poor-prognosis subset of meningiomas. We carried out proteomic analyses of tissue extracts to discover new markers to accurately distinguish between infiltrative and noninfiltrative meningiomas. METHODOLOGY/PRINCIPAL FINDINGS: Protein lysates of 64 different tissue samples (including two brain-invasive and 32 infiltrative tumors) were submitted to SELDI-TOF mass spectrometric analysis. Mass profiles were used to build up both unsupervised and supervised hierarchical clustering. One marker was found at high levels in noninvasive and noninfiltrative tumors and appeared to be a discriminative marker for clustering infiltrative and/or invasive meningiomas versus noninvasive meningiomas in two distinct subsets. Sensitivity and specificity were 86.7% and 100%, respectively. This marker was purified and identified as a multiphosphorylated form of vimentin, a cytoskeletal protein expressed in meningiomas. CONCLUSIONS/SIGNIFICANCE: Specific forms of vimentin can be surrogate molecular indicators of the invasive/infiltrative phenotype in tumors

    Performance of non-invasive tests and histology for the prediction of clinical outcomes in patients with non-alcoholic fatty liver disease: an individual participant data meta-analysis

    Get PDF
    BackgroundHistologically assessed liver fibrosis stage has prognostic significance in patients with non-alcoholic fatty liver disease (NAFLD) and is accepted as a surrogate endpoint in clinical trials for non-cirrhotic NAFLD. Our aim was to compare the prognostic performance of non-invasive tests with liver histology in patients with NAFLD.MethodsThis was an individual participant data meta-analysis of the prognostic performance of histologically assessed fibrosis stage (F0–4), liver stiffness measured by vibration-controlled transient elastography (LSM-VCTE), fibrosis-4 index (FIB-4), and NAFLD fibrosis score (NFS) in patients with NAFLD. The literature was searched for a previously published systematic review on the diagnostic accuracy of imaging and simple non-invasive tests and updated to Jan 12, 2022 for this study. Studies were identified through PubMed/MEDLINE, EMBASE, and CENTRAL, and authors were contacted for individual participant data, including outcome data, with a minimum of 12 months of follow-up. The primary outcome was a composite endpoint of all-cause mortality, hepatocellular carcinoma, liver transplantation, or cirrhosis complications (ie, ascites, variceal bleeding, hepatic encephalopathy, or progression to a MELD score ≥15). We calculated aggregated survival curves for trichotomised groups and compared them using stratified log-rank tests (histology: F0–2 vs F3 vs F4; LSM: 2·67; NFS: 0·676), calculated areas under the time-dependent receiver operating characteristic curves (tAUC), and performed Cox proportional-hazards regression to adjust for confounding. This study was registered with PROSPERO, CRD42022312226.FindingsOf 65 eligible studies, we included data on 2518 patients with biopsy-proven NAFLD from 25 studies (1126 [44·7%] were female, median age was 54 years [IQR 44–63), and 1161 [46·1%] had type 2 diabetes). After a median follow-up of 57 months [IQR 33–91], the composite endpoint was observed in 145 (5·8%) patients. Stratified log-rank tests showed significant differences between the trichotomised patient groups (p<0·0001 for all comparisons). The tAUC at 5 years were 0·72 (95% CI 0·62–0·81) for histology, 0·76 (0·70–0·83) for LSM-VCTE, 0·74 (0·64–0·82) for FIB-4, and 0·70 (0·63–0·80) for NFS. All index tests were significant predictors of the primary outcome after adjustment for confounders in the Cox regression.InterpretationSimple non-invasive tests performed as well as histologically assessed fibrosis in predicting clinical outcomes in patients with NAFLD and could be considered as alternatives to liver biopsy in some cases

    Challenges of Handling, Processing, and Studying Liquid and Supercooled Materials at Temperatures above 3000 K with Electrostatic Levitation

    No full text
    Over the last 20 years, great progress has been made in techniques for electrostatic levitation, with innovations such as containerless thermophysical property measurements and combination of levitators with synchrotron radiation source and neutron beams, to name but a few. This review focuses on the technological developments necessary for handling materials whose melting temperatures are above 3000 K. Although the original electrostatic levitator designed by Rhim et al. allowed the handling, processing, and study of most metals with melting points below 2500 K, several issues appeared, in addition to the risk of contamination, when metals such as Os, Re, and W were processed. This paper describes the procedures and the innovations that made successful levitation and the study of refractory metals at extreme temperatures (&gt;3000 K) possible; namely, sample handling, electrode design (shape and material), levitation initiation, laser heating configuration, and UV range imaging. Typical results are also presented, putting emphasis on the measurements of density, surface tension, and viscosity of refractory materials in their liquid and supercooled phases. The data obtained are exemplified by tungsten, which has the highest melting temperature among metals (and is second only to carbon in the periodic table), rhenium and osmium. The remaining technical difficulties such as temperature measurement and evaporation are discussed

    Aerodynamic trapping and laser heating for containerless glass processing in microgravity

    No full text
    corecore