129 research outputs found

    Endoplasmic reticulum stress-induced release and binding of calreticulin from human ovarian cancer cells

    Get PDF
    BACKGROUND: Calreticulin (CRT) is an endoplasmic reticulum (ER) chaperone, but can appear surface bound on cancers cells, including ovarian cancers (OC). We investigated at what stage of cell viability, CRT appeared associated with surface of human OC cells. CRT on pre-apoptotic tumour cells is thought to initiate their eradication via a process termed immunogenic cell death (ICD). METHODS: We treated OC cells with the chemotherapeutic-doxorubicin (DX) known to induce translocation of CRT to some tumour cell surfaces, with and without the ER stressor-thapsigargin (TG)-and/or an ER stress inhibitor-TUDCA. We monitored translocation/release of CRT in pre-apoptotic cells by flow cytometry, immunoblotting and ELISA. We investigated the difference in binding of FITC-CRT to pre-apoptotic, apoptotic and necrotic cells and the ability of extracellular CRT to generate immature dendritic cells from THP-1 monocytes. RESULTS: Dx-treatment increased endogenously released CRT and extracellular FITC_CRT binding to human pre-apoptotic OC cells. DX and TG also promoted cell death in OC cells which also increased CRT release. These cellular responses were significantly inhibited by TUDCA, suggesting that ER stress is partially responsible for the changes in CRT cellular distribution. Extracellular CRT induces maturation of THP-1 towards a imDC phenotype, an important component of ICD. CONCLUSION: Collectively, these cellular responses suggest that ER stress is partially responsible for the changes in CRT cellular distribution. ER-stress regulates in part the release and binding of CRT to human OC cells where it may play a role in ICD

    Associations Between Behavioral Effects of Bisphenol A and DNA Methylation in Zebrafish Embryos

    Get PDF
    Endocrine-disrupting contaminants have been associated with aberrant changes in epigenetic pathways in animals. In this study, zebrafish embryos were exposed bisphenol A (BPA) to search for associations between behavior and epigenetic mechanisms in fish. For concentration-dependent responses, embryos were exposed to a range of BPA concentrations (0.1 nM to 30 μM). Embryos were analyzed for locomotor activity at 3-, 4-, and 5-days post fertilization (dpf) in response to changing light conditions. Based on concentration-dependent effects on behavior and gene expression, 10 μM BPA [from 24 to 96 hours post fertilization (hpf)] was used for a whole-genome bisulfite sequencing (WGBS) study searching for genome-wide impacts on DNA methylation. Over the examined concentration ranges, hyperactivity was demonstrated for exposures to 0.001 μM BPA in comparison to embryos exposed to lower or higher BPA concentrations. Transcriptional analysis showed significant effects at >0.01 μM BPA for two genes related to DNA methylation (dnmt1, cbs). BPA exposure did not significantly affect global DNA methylation, but 20,474 differentially methylated (DM) sites in 4,873 genes were identified by WGBS analysis. Most DM sites were identified within gene bodies. The genes with the most DM sites were all protocadherin 2 gamma subfamily genes, related to axon targeting, synaptic development and neuronal survival. KEGG pathways most significantly affected by BPA exposure were phosphatidylinositol signaling system, followed by VEGF and MAPK signaling pathways. This study shows that BPA can affect zebrafish embryo swimming activity at very low concentrations as well as affecting numerous methylated sites in genes which are overrepresented in functionally relevant metabolic pathways. In conclusion, altered methylation patterns of genes associated with nervous system development might lead to abnormal swimming activity.Associations Between Behavioral Effects of Bisphenol A and DNA Methylation in Zebrafish EmbryospublishedVersio

    Low intestinal inflammation model (HP48) in Atlantic salmon (Salmo salar) and inflammatory mitigation by Bactocell

    Get PDF
    Moderate levels of intestinal damage and inflammation are often seen in intensive fish aquaculture. The causes may be due to antinutrients from plant meals, stress or other causes. There is currently a lack of good models to explore these effects and so how to mitigate the consequences. Most studies have used full-fat soy or other compounds that cause intestinal damage that are likely not reversible. In this study we have explored the possibility of using soybean HP48, made from solvent extracted peeled soybeans, as a low-inflammation model in post-smolt Atlantic salmon, and then investigated whether supplementation of the probiotic Pediococcus acidilactici CNCM I-4622 – MA 18/5 M (Bactocell) could diminish this effect. The fish were fed triplicate diets. A Control diet containing 18.08% soy protein concentrate (SPC), a HP48 diet where most of the SPC was replaced by HP48 (5.00% SPC and 17.68% HP48), and a Bactocell diet that was identical to the HP48 diet but contained 0.03% Bactocell. After 10 weeks of feeding, the mid- and hind-intestinal health were assessed by histology, integrity (Ussing chamber) and gene expression (RNAseq). Transcriptomic and integrity data suggests that HP48 led to a disturbed mid-intestinal homeostasis with impaired cellular integrity and increased inflammation and cell turnover. Most of the transcriptomic effects were reversed with Bactocell including downregulation of immune genes and upregulation of transmembrane proteins such as type IV collagen, which is important in restoring epithelial homeostasis. In the hind-intestine, the HP48 diet led to deleterious morphological changes such as widening of lamina propria and stratum granulosum, disrupted mucosal folds, loss of absorptive vacuoles, and upregulation of several immune regulated genes and downregulation of genes involved in solute- and water transport. The intestinal integrity assessed by Ussing chamber was not affected. Bactocell supplementation did alleviate several of the morphological effects. However, it was not able to completely reverse the expression of immune- or transport related genes, suggesting a higher effect of probiotic supplement in the mid-intestine compared to the hind-intestine. This study demonstrates that the level of HP48 used here is sufficient to create low-level intestinal changes in Atlantic salmon, which is within range for functional feed ingredients to reverse.publishedVersio

    Acute stress response on Atlantic salmon: a time-course study of the effects on plasma metabolites, mucus cortisol levels, and head kidney transcriptome profile

    Get PDF
    Farmed Atlantic salmon (Salmo salar) welfare and performance can be strongly influenced by stress episodes caused by handling during farming practices. To better understand the changes occurring after an acute stress response, we exposed a group of Atlantic salmon parr to an acute stressor, which involved netting and transferring fish to several new holding tanks. We describe a time-course response to stress by sampling parr in groups before (T0) and 10, 20, 30, 45, 60, 120, 240, 300, and 330 min post-stress. A subgroup of fish was also subjected to the same stressor for a second time to assess their capacity to respond to the same challenge again within a short timeframe (ReStressed). Fish plasma was assessed for adrenocorticotropic hormone (ACTH), cortisol, and ions levels. Mucus cortisol levels were analyzed and compared with the plasma cortisol levels. At 5 selected time points (T0, 60, 90, 120, 240, and ReStressed), we compared the head kidney transcriptome profile of 10 fish per time point. The considerably delayed increase of ACTH in the plasma (60 min post-stress), and the earlier rise of cortisol levels (10 min post-stress), suggests that cortisol release could be triggered by more rapidly responding factors, such as the sympathetic system. This hypothesis may be supported by a high upregulation of several genes involved in synaptic triggering, observed both during the first and the second stress episodes. Furthermore, while the transcriptome profile showed few changes at 60 min post-stress, expression of genes in several immune-related pathways increased markedly with each successive time point, demonstrating the role of the immune system in fish coping capacity. Although many of the genes discussed in this paper are still poorly characterized, this study provides new insights regarding the mechanisms occurring during the stress response of salmon parr and may form the basis for a useful guideline on timing of sampling protocols.publishedVersio

    Red and white chinook salmon (Oncorhynchus tshawytscha): Differences in the transcriptome profile of muscle, liver, and pylorus

    Get PDF
    Astaxanthin (Ax), the main carotenoid responsible for the distinct red flesh color in salmonids (Oncorhynchus, Salvelinus, Salmo, and Parahucho), is added to the diet of farmed fish at a substantial cost. Despite the great economical value for the salmon industry, the key molecular mechanisms involved in the regulation of muscle coloration are poorly understood. Chinook salmon (Oncorhynchus tshawytscha) represent an ideal model to study flesh coloration because they exhibit a distinct color polymorphism responsible for two color morphs, white and red flesh pigmented fish. This study was designed to identify the molecular basis for the development of red and white coloration of fish reared under the same experimental conditions and to better understand the absorption mechanism of Ax in salmonids. Pyloric caeca, liver, and muscle of both groups (n = 6 each) were selected as the most likely critical target organs to be involved respectively in the intestinal uptake, metabolism, and retention of Ax. Difference in the transcriptome profile of each tissue using next-generation sequencing technology was conducted. Ten KEGG pathways were significantly enriched for differentially expressed genes between red and white salmon pylorus tissue, while none for the transcriptome profile in the other two tissues. Differential expressed gene (DE) analyses showed that there were relatively few differences in muscle (31 DE genes, p < 0.05) and liver (43 DE genes, p < 0.05) of white and red Chinook salmon compared approximately 1125 DE genes characterized in the pylorus tissue, with several linked to Ax binding ability, absorption, and metabolism.publishedVersio

    Mid and hindgut transcriptome profiling analysis of Atlantic salmon (Salmon salar) under unpredictable chronic stress

    Get PDF
    The intestinal epithelium is a selectively permeable barrier for nutrients, electrolytes and water, while maintaining effective protection against pathogens. Combinations of stressors throughout an animal's life, especially in agriculture and aquaculture settings, may affect the regular operativity of this organ with negative consequences for animal welfare. In the current study, we report the effects of a three-week unpredictable chronic stress (UCS) period on the intestinal morphology and transcriptome response of Atlantic salmon (Salmon salar) parr midgut and hindgut. Midgut and hindgut from both control and UCS fish were collected for histology and RNA-sequencing analysis to identify respective changes in the membrane structures and putative genes and pathways responding to UCS. Histological analysis did not show any significant effect on morphometric parameters. In the midgut, 1030 genes were differentially expressed following UCS, resulting in 279 genes which were involved in 13 metabolic pathways, including tissue repair pathways. In the hindgut, following UCS, 591 differentially expressed genes were detected with 426 downregulated and 165 upregulated. A total of 53 genes were related to three pathways. Downregulated genes include cellular senescence pathways, p53 signalling and cytokine–cytokine receptor pathways. The overall results corroborate that salmon parr were at least partly habituating to the UCS treatment. In midgut, the main upregulation was related to cell growth and repair, while in the hindgut there were indications of the activated apoptotic pathway, reduced cell repair and inhibited immune/anti-inflammatory capacity. This may be the trade-off between habituating to UCS and health resilience. This study suggests possible integrated genetic regulatory mechanisms that are tuned when farmed Atlantic salmon parr attempt to cope with UCS.publishedVersio

    Intestinal health in Atlantic salmon post-smolt (Salmo salar) when fed low- and high HUFA diets

    Get PDF
    It is well established that farmed Atlantic salmon (Salmo salar) need n3-highly unsaturated fatty acids (HUFA) in their diet to thrive and grow. However, the biological functions to the individual HUFAs may differ, implying that future supplementation could require fixed ratios for maximum benefit. The intestinal barrier is essential to f ish health, and any disruption of the barrier can have detrimental effects. The current experiment was designed to examine the response of the intestinal hindgut when fed a low HUFA diet with 8.5 g/kg EPA + DHA (4.5% total fatty acid) or two high HUFA diets, with either high DHA (28.7 g/kg and 5.9% total fatty acid) or high EPA (25 g/kg and 14.2% total fatty acid). The diets were fed to Atlantic salmon post-smolt over 10 weeks and thereafter exposed to 3 weeks of chronic stress. After 10 weeks of feeding there were no differences in intestinal permeability and integrity, but intestinal morphology indicated increased intestinal health in the high EPA group. Gene expression also suggest that fish fed the high EPA diet had more regulation of pathways related to protein turnover compared to the high DHA fed fish. There was also indication of lower energy utilization in the low HUFA fed fish than high HUFA. Subjecting fish to 3 weeks of chronic stress led to a reduction in transepithelial resistance, increased ion flux and active L-lysine transport across the intestinal barrier in addition to a decrease in mucosal fold, enterocyte height and supranuclear vacuole density and an increase in thickness of the intestinal muscularis. After stress, the low HUFA group showed signs of inflammation with increased infiltration of MHCII positive cells. Gene expression also showed that low HUFA fed fish had a lower response to chronic stress compared to the high HUFA groups. Comparing fish fed either high DHA or EPA exposed to chronic stress showed few physical effects, but a lower density of supranuclear vacuoles and upregulation in immune-related gene expression indicate inflammation in the high DHA group.publishedVersio

    Metabolic and molecular signatures of improved growth in Atlantic salmon (Salmo salar) fed surplus levels of methionine, folic acid, vitamin B6 and B12 throughout smoltification.

    Get PDF
    A moderate surplus of the 1C nutrients methionine, folic acid, vitamin B6 and B12 above dietary recommendations for Atlantic salmon has shown to improve growth and reduce hepatosomatic index in the on-growing salt water period when fed throughout smoltification. Metabolic properties and molecular mechanisms determining the improved growth are unexplored. Here, we investigate metabolic and transcriptional signatures in skeletal muscle taken before and after smoltification to acquire deeper insight into pathways and possible nutrient-gene-interactions. A control feed (Ctrl) or 1C nutrient surplus feed (1C+) were fed to Atlantic salmon six weeks prior to smoltification until three months after salt water transfer. Both metabolic and gene expression signatures revealed significant 1C nutrient-dependent changes already at pre-smolt, but differences intensified when analysing post-smolt muscle. Transcriptional differences revealed a lower expression of genes related to translation, growth, and amino acid metabolization in post-smolt muscle when fed additional 1C nutrients. The 1C+ group showed less free amino acid and putrescine levels, and higher methionine and glutathione (GSH) amounts in muscle. For Ctrl muscle, the overall metabolic profile suggests a lower amino acid utilization for protein synthesis, and increased methionine metabolization in polyamine and redox homeostasis, whereas transcription changes are indicative of compensatory growth regulation at local tissue level. These findings point to fine-tuned nutrient-gene-interactions fundamental for improved growth capacity through better amino acid utilization for protein accretion when salmon was fed additional 1C nutrients throughout smoltification. It also highlights potential nutritional programming strategies on improved post-smolt growth through 1C+ supplementation before and throughout smoltification.acceptedVersio

    Statistical Telegram. MONTHLY STATISTICS OF REGISTERED UNEMPLOYMENT IN THE EUROPEAN COMMUNITY SEPTEMBER 1977. 1977.10

    Get PDF
    Abstract Background Ascochyta blight, caused by the fungus Ascochyta lentis, is one of the most destructive lentil diseases worldwide, resulting in over $16 million AUD annual loss in Australia alone. The use of resistant cultivars is currently considered the most effective and environmentally sustainable strategy to control this disease. However, little is known about the genes and molecular mechanisms underlying lentil resistance against A. lentis. Results To uncover the genetic basis of lentil resistance to A. lentis, differentially expressed genes were profiled in lentil plants during the early stages of A. lentis infection. The resistant ‘ILL7537’ and susceptible ‘ILL6002’ lentil genotypes were examined at 2, 6, and 24 h post inoculation utilising high throughput RNA-Sequencing. Genotype and time-dependent differential expression analysis identified genes which play key roles in several functions of the defence response: fungal elicitors recognition and early signalling; structural response; biochemical response; transcription regulators; hypersensitive reaction and cell death; and systemic acquired resistance. Overall, the resistant genotype displayed an earlier and faster detection and signalling response to the A. lentis infection and demonstrated higher expression levels of structural defence-related genes. Conclusions This study presents a first-time defence-related transcriptome of lentil to A. lentis, including a comprehensive characterisation of the molecular mechanism through which defence against A. lentis is induced in the resistant lentil genotype

    Graphene Oxide-Based Targeting of Extracellular Cathepsin D and Cathepsin L As A Novel Anti-Metastatic Enzyme Cancer Therapy

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.Overexpression and secretion of the enzymes cathepsin D (CathD) and cathepsin L (CathL) is associated with metastasis in several human cancers. As a superfamily, extracellularly, these proteins may act within the tumor microenvironment to drive cancer progression, proliferation, invasion and metastasis. Therefore, it is important to discover novel therapeutic treatment strategies to target CathD and CathL and potentially impede metastasis. Graphene oxide (GO) could form the basis of such a strategy by acting as an adsorbent for pro-metastatic enzymes. Here, we have conducted research into the potential of targeted anti-metastatic therapy using GO to adsorb these pro-tumorigenic enzymes. Binding of CathD/L to GO revealed that CathD/L were adsorbed onto the surface of GO through its cationic and hydrophilic residues. This work could provide a roadmap for the rational integration of CathD/L-targeting agents into clinical settings.Engineering and Physical Sciences Research Council (EPSRC)FORCE Cancer Charit
    • …
    corecore