33 research outputs found

    Diel Vertical Movements of a Scalloped Hammerhead, \u3ci\u3eSphyrna lewini\u3c/i\u3e, in the Northern Gulf of Mexico

    Get PDF
    Despite the circumglobal distribution of scalloped hammerheads, Sphyrna lewini (Griffith and Smith, 1834), little information is available regarding fine-scale movement and habitat use patterns for this species. Over a 27-d period, data were collected on diel habitat use and environmental preferences of a 240 cm (total length) female S. lewini. The shark exhibited a consistent and repeated diel vertical movement pattern, making more than 76 deep nighttime dives; the maximum depth reached was 964 m, where the temperature was 5.8 degrees C. The purpose of the nightly oscillatory deep diving pattern is unknown but could possibly represent feeding behavior. These findings represent the first detailed account of S. lewini diel vertical behavior and habitat utilization in the western North Atlantic Ocean

    Paula, the pioneer

    Get PDF
    One tagged Red Knot commutes from Wadden Sea to Canadian breeding grounds and finally shows us the details of this migratio

    The movement ecology of the Mauritian flying fox (Pteropus niger):A long-term study using solar-powered GSM/GPS tags

    Get PDF
    Abstract Background Flying foxes (Chiroptera: Pteropodidae) are large bats that often roost in the sun, hence solar-powered GPS/GSM devices can track their movements over extended periods. The endemic Mauritian flying fox (Pteropus niger) has recently been subjected to large-scale culling because of perceived damage to commercial fruit, and a consequent reduction in numbers of > 50% since 2015 resulted in its IUCN Red List Status being up-listed to Endangered. Determining its movements will be important for management and conservation, for understanding potential responses to environmental change, and for understanding population admixture. Methods Twelve bats were tagged with solar-powered GPS/GSM devices in 2014–2016. Tags remained active for up to almost a year (maximum 359 days: average 139 days (males) and 93 days (females)), providing some of the longest-term data on the movement ecology of bats yet obtained. Eight bats were probably hunted illegally, highlighting the scale of unauthorised persecution. Results Males travelled on average 9 km each night, females 6 km. The nightly distance covered by adults of both sexes was higher in winter than in summer, though the opposite pattern occurred for immature males. These differences are probably related to seasonal changes in fruit availability (adults) and to dispersal by immature males. The maximum distance covered during one night was > 92 km. Home ranges of males averaged 74,633 ha, females 31,072 ha. Core foraging areas averaged 2222 ha for males, 1364 ha for females. Fifty roosts were identified, mainly in forest fragments. As the bats disperse seeds of native plants that form forest canopies, conservation of the bats will potentially maintain and enhance native forest cover, in turn providing roosting sites for the bats. Conclusions Solar-powered GSM tagging provides unprecedented potential for understanding the movement ecology of flying foxes. Mauritian flying foxes often move between the few remnant native forest fragments, which remain important for their conservation, and have potentially important roles in seed dispersal. Their nomadic movement fits with their panmictic genetic structure. Although their ability for long distance movements, sometimes over short timescales, permits rapid responses to local threats and environmental change, being restricted to Mauritius renders the bats extremely vulnerable to intense culling

    When a typical jumper skips:Itineraries and staging habitats used by Red Knots (<i>Calidris canutus piersmai</i>) migrating between northwest Australia and the New Siberian Islands

    Get PDF
    The ecological reasons for variation in avian migration, with some populations migrating across thousands of kilometres between breeding and non-breeding areas with one or few refuelling stops, in contrast to others that stop more often, remain to be pinned down. Red Knots Calidris canutus are a textbook example of a shorebird species that makes long migrations with only a few stops. Recognizing that such behaviours are not necessarily species-specific but determined by ecological context, we here provide a description of the migrations of a relatively recently described subspecies (piersmai). Based on data from tagging of Red Knots on the terminal non-breeding grounds in northwest Australia with 4.5- and 2.5-g solar-powered Platform Terminal Transmitters (PTTs) and 1.0-g geolocators, we obtained information on 19 route-records of 17 individuals, resulting in seven complete return migrations. We confirm published evidence that Red Knots of the piersmai subspecies migrate from NW Australia and breed on the New Siberian Islands in the Russian Arctic and that they stage along the coasts of southeastern Asia, especially in the northern Yellow Sea in China. Red Knots arrived on the tundra breeding grounds from 8 June onwards. Southward departures mainly occurred in the last week of July and the first week of August. We documented six non-stop flights of over c. 5000 km (with a maximum of 6500 km, lasting 6.6 days). Nevertheless, rather than staging at a single location for multiple weeks halfway during migration, piersmai-knots made several stops of up to a week. This was especially evident during northward migration, when birds often stopped along the way in southeast Asia and 'hugged' the coast of China, thus flying an additional 1000-1500 km compared with the shortest possible (great circle route) flights between NW Australia and the Yellow Sea. The birds staged longest in areas in northern China, along the shores of Bohai Bay and upper Liaodong Bay, where the bivalve Potamocorbula laevis, known as a particularly suitable food for Red Knots, was present. The use of multiple food-rich stopping sites during northward migration by piersmai is atypical among subspecies of Red Knots. Although piersmai apparently has the benefit of multiple suitable stopping areas along the flyway, it is a subspecies in decline and their mortality away from the NW Australian non-breeding grounds has been elevated

    A red knot as a black swan:How a single bird shows navigational abilities during repeat crossings of the Greenland Icecap

    Get PDF
    Despite the wealth of studies on seasonal movements of birds between southern nonbreeding locations and High Arctic breeding locations, the key mechanisms of navigation during these migrations remain elusive. A flight along the shortest possible route between pairs of points on a sphere ('orthodrome') requires a bird to be able to assess its current location in relation to its migration goal and to make continuous adjustment of heading to reach that goal. Alternatively, birds may navigate along a vector with a fixed orientation ('loxodrome') based on magnetic and/or celestial compass mechanisms. Compass navigation is considered especially challenging for summer migrations in Polar regions, as continuous daylight and complexity in the geomagnetic field may complicate the use of both celestial and magnetic compasses here. We examine the possible use of orientation mechanisms during migratory flights across the Greenland Icecap. Using a novel 2 g solar-powered satellite transmitter, we documented the flight paths travelled by a female red knotCalidris canutus islandicaduring two northward and two southward migrations. The geometry of the paths suggests that red knots can migrate across the Greenland Icecap along the shortest-, orthodrome-like, path instead of the previously suggested loxodrome path. This particular bird's ability to return to locations visited in a previous year, together with its sudden course changes (which would be appropriate responses to ambient wind fields), suggest a map sense that enables red knots to determine location, so that they can tailor their route depending on local conditions

    Further evidence for a parent-of-origin effect at the NOP9 locus on language-related phenotypes

    Get PDF
    Background - Specific language impairment (SLI) is a common neurodevelopmental disorder, observed in 5–10 % of children. Family and twin studies suggest a strong genetic component, but relatively few candidate genes have been reported to date. A recent genome-wide association study (GWAS) described the first statistically significant association specifically for a SLI cohort between a missense variant (rs4280164) in the NOP9 gene and language-related phenotypes under a parent-of-origin model. Replications of these findings are particularly challenging because the availability of parental DNA is required. Methods - We used two independent family-based cohorts characterised with reading- and language-related traits: a longitudinal cohort (n = 106 informative families) including children with language and reading difficulties and a nuclear family cohort (n = 264 families) selected for dyslexia. Results - We observed association with language-related measures when modelling for parent-of-origin effects at the NOP9 locus in both cohorts: minimum P = 0.001 for phonological awareness with a paternal effect in the first cohort and minimum P = 0.0004 for irregular word reading with a maternal effect in the second cohort. Allelic and parental trends were not consistent when compared to the original study. Conclusions - A parent-of-origin effect at this locus was detected in both cohorts, albeit with different trends. These findings contribute in interpreting the original GWAS report and support further investigations of the NOP9 locus and its role in language-related traits. A systematic evaluation of parent-of-origin effects in genetic association studies has the potential to reveal novel mechanisms underlying complex traits

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Global Spatial Risk Assessment of Sharks Under the Footprint of Fisheries

    Get PDF
    Effective ocean management and conservation of highly migratory species depends on resolving overlap between animal movements and distributions and fishing effort. Yet, this information is lacking at a global scale. Here we show, using a big-data approach combining satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively) and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of high-seas fishing effort. Results demonstrate an urgent need for conservation and management measures at high-seas shark hotspots and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real time, dynamic management
    corecore