12,313 research outputs found
Evaluation of geophysical properties of the lunar regolith for the design of precursor scientific missions for the space exploration initiative
The following topics are addressed: (1) the frequency of encountering boulders that represent hazards to lunar operations; (2) the ease of lunar soil excavation; (3) the use of explosives in excavation operation; (4) the trafficability of the regolith; (5) problems encountered in mining (probably strip mining) of the regolith; (6) the stable angle(s) of repose in excavation of the regolith; (7) the layering to be encountered in the subsurface; (8) knowledge of the regolith site and the possibility of its general application to any site on the lunar surface; (9) the data needed to characterize a site for a lunar base; (10) the influence of regolith properties on the design of geophysical experiments from the lunar base; and (11) terrestrial analogues for the geophysical properties of the lunar regolith
Investigation of the mode of compensation of Venus topography
The Venus gravity data derived from the Pioneer Venus Orbiter indicates a strong correlation of gravity to topography at all resolvable wavelengths. Focus was on an analysis in the spatial domain, using a geophysical model of topographic compensation together with the topography data to compute gravity vectors corresponding to the observed data and comparison of the calculated and observed gravity vectors
Relationships Between Atomic Diffusion Mechanisms and Ensemble Transport Coefficients in Crystalline Polymorphs
Ionic transport in conventional ionic solids is generally considered to
proceed via independent diffusion events or "hops''. This assumption leads to
well-known Arrhenius expressions for transport coefficients, and is equivalent
to assuming diffusion is a Poisson process. Using molecular dynamics
simulations of the low-temperature B1, B3, and B4 AgI polymorphs, we have
compared rates of ion-hopping with corresponding Poisson distributions to test
the assumption of independent hopping in these common structure-types. In all
cases diffusion is a non-Poisson process, and hopping is strongly correlated in
time. In B1 the diffusion coefficient can be approximated by an Arrhenius
expression, though the physical significance of the parameters differs from
that commonly assumed. In low temperature B3 and B4 diffusion is characterised
by concerted motion of multiple ions in short closed loops. Diffusion
coefficients can not be expressed in a simple Arrhenius form dependent on
single-ion free-energies, and intrinsic diffusion must be considered a
many-body process
Molecular Dynamics Simulation of Coherent Interfaces in Fluorite Heterostructures
The standard model of enhanced ionic conductivities in solid electrolyte
heterostructures follows from a continuum mean-field description of defect
distributions that makes no reference to crystalline structure. To examine
ionic transport and defect distributions while explicitly accounting for
ion-ion correlations and lattice effects, we have performed molecular dynamics
simulations of a model coherent fluorite heterostructure without any extrinsic
defects, with a difference in standard chemical potentials of mobile fluoride
ions between phases induced by an external potential. Increasing the offset in
fluoride ion standard chemical potentials across the internal interfaces
decreases the activation energies for ionic conductivity and diffusion and
strongly enhances fluoride ion mobilities and defect concentrations near the
heterostructure interfaces. Non-charge-neutral "space-charge" regions, however,
extend only a few atomic spacings from the interface, suggesting a continuum
model may be inappropriate. Defect distributions are qualitatively inconsistent
with the predictions of the continuum mean-field model, and indicate strong
lattice-mediated defect-defect interactions. We identify an atomic-scale
"Frenkel polarisation" mechanism for the interfacial enhancement in ionic
mobility, where preferentially oriented associated Frenkel pairs form at the
interface and promote local ion mobility via concerted diffusion processes
Physical properties of VTiO (0 x 0.187) single crystals
Free standing, low strain, single crystals of pure and titanium doped
VO were grown out of an excess of VO using high temperature
solution growth techniques. At 340 K, pure VO exhibits a
clear first-order phase transition from a high-temperature paramagnetic
tetragonal phase (R) to a low-temperature non-magnetic monoclinic phase (M1).
With Ti doping, another monoclinic phase (M2) emerges between the R and M1
phases. The phase transition temperature between R and M2 increases with
increasing Ti doping while the transition temperature between M2 and M1
decreases.Comment: 11 pages, 8 figure
Local or state? Evidence on bank market size using branch prices
With the elimination of state laws against branching, banks can now compete across states. They are no longer limited to competing in local markets, defined by the Federal Reserve as metropolitan statistical areas or small groups of rural counties. Accordingly, a "local or state?" debate over market size is taking place among researchers, with some arguing that banking markets are statewide and others contending that they remain local. This article contributes to the debate with a novel, arguably better, indicator of market size: bank branch prices, as opposed to bank deposit rates. The pattern of branch price data suggests that banking markets are not necessarily local. The authors find that branch prices in ten northeast states over the 1990s are more closely correlated with bank concentration at the state level than at the local level, consistent with the "state-market" argument. However, they caution that the relationship is not completely robust; it depends partly on how the data are parsed. Further study using a larger set of branch price data will help settle the debate more definitively.Banking market ; Branch banks ; Bank competition
Heat transfer by fluids in granulite metamorphism
The thermal role of fluids in granulite metamorphism was presented. It was shown that for granulites to be formed in the middle crust, heat must be advected by either magma or by volatile fluids, such as water or CO2. Models of channelized fluid flow indicate that there is little thermal difference between channelized and pervasive fluid flow, for the same total fluid flux, unless the channel spacing is of the same order or greater than the thickness of the layer through which the fluids flow. The volumes of volatile fluids required are very large and are only likely to be found associated with dehydration of a subducting slab, if volatile fluids are the sole heat source for granulite metamorphism
Energy analysis and optimisation techniques for automatically synthesised coprocessors
The primary outcome of this research project is the development of a methodology enabling fast automated early-stage power and energy analysis of configurable processors for system-on-chip platforms. Such capability is essential to the process of selecting energy efficient processors during design-space exploration, when potential savings are highest. This has been achieved by developing dynamic and static energy consumption models for the constituent blocks within the processors.
Several optimisations have been identified, specifically targeting the most significant blocks in terms of energy consumption. Instruction encoding mechanism reduces both the energy and area requirements of the instruction cache; modifications to the multiplier unit reduce energy consumption during inactive cycles. Both techniques are demonstrated to offer substantial energy savings.
The aforementioned techniques have undergone detailed evaluation and, based on the positive outcomes obtained, have been incorporated into Cascade, a system-on-chip coprocessor synthesis tool developed by Critical Blue, to provide automated analysis and optimisation of processor energy requirements. This thesis details the process of identifying and examining each method, along with the results obtained. Finally, a case study demonstrates the benefits of the developed functionality, from the perspective of someone using Cascade to automate the creation of an energy-efficient configurable processor for system-on-chip platforms
- …