54 research outputs found
Estimating genomic coexpression networks using first-order conditional independence
We describe a computationally efficient statistical framework for estimating networks of coexpressed genes. This framework exploits first-order conditional independence relationships among gene-expression measurements to estimate patterns of association. We use this approach to estimate a coexpression network from microarray gene-expression measurements from Saccharomyces cerevisiae. We demonstrate the biological utility of this approach by showing that a large number of metabolic pathways are coherently represented in the estimated network. We describe a complementary unsupervised graph search algorithm for discovering locally distinct subgraphs of a large weighted graph. We apply this algorithm to our coexpression network model and show that subgraphs found using this approach correspond to particular biological processes or contain representatives of distinct gene families
Modeling mutant phenotypes and oscillatory dynamics in the Saccharomyces cerevisiae cAMP-PKA pathway
Background The cyclic AMP-Protein Kinase A (cAMP-PKA) pathway is an evolutionarily conserved signal transduction mechanism that regulates cellular growth and differentiation in animals and fungi. We present a mathematical model that recapitulates the short-term and long-term dynamics of this pathway in the budding yeast, Saccharomyces cerevisiae. Our model is aimed at recapitulating the dynamics of cAMP signaling for wild-type cells as well as single (pde1Δ and pde2Δ) and double (pde1Δpde2Δ) phosphodiesterase mutants. Results Our model focuses on PKA-mediated negative feedback on the activity of phosphodiesterases and the Ras branch of the cAMP-PKA pathway. We show that both of these types of negative feedback are required to reproduce the wild-type signaling behavior that occurs on both short and long time scales, as well as the the observed responses of phosphodiesterase mutants. A novel feature of our model is that, for a wide range of parameters, it predicts that intracellular cAMP concentrations should exhibit decaying oscillatory dynamics in their approach to steady state following glucose stimulation. Experimental measurements of cAMP levels in two genetic backgrounds of S. cerevisiae confirmed the presence of decaying cAMP oscillations as predicted by the model. Conclusions Our model of the cAMP-PKA pathway provides new insights into how yeast respond to alterations in their nutrient environment. Because the model has both predictive and explanatory power it will serve as a foundation for future mathematical and experimental studies of this important signaling network
Amoeba predation of Cryptococcus:A quantitative and population genomic evaluation of the Accidental Pathogen hypothesis
The “Amoeboid Predator-Fungal Animal Virulence Hypothesis” posits that interactions with environmental phagocytes shape the evolution of virulence traits in fungal pathogens. In this hypothesis, selection to avoid predation by amoeba inadvertently selects for traits that contribute to fungal escape from phagocytic immune cells. Here, we investigate this hypothesis in the human fungal pathogens Cryptococcus neoformans and Cryptococcus deneoformans. Applying quantitative trait locus (QTL) mapping and comparative genomics, we discovered a cross-species QTL region that is responsible for variation in resistance to amoeba predation. In C. neoformans, this same QTL was found to have pleiotropic effects on melanization, an established virulence factor. Through fine mapping and population genomic comparisons, we identified the gene encoding the transcription factor Bzp4 that underlies this pleiotropic QTL and we show that decreased expression of this gene reduces melanization and increases susceptibility to amoeba predation. Despite the joint effects of BZP4 on amoeba resistance and melanin production, we find no relationship between BZP4 genotype and escape from macrophages or virulence in murine models of disease. Our findings provide new perspectives on how microbial ecology shapes the genetic architecture of fungal virulence, and suggests the need for more nuanced models for the evolution of pathogenesis that account for the complexities of both microbe-microbe and microbe-host interactions
Amoeba predation of <i>Cryptococcus</i>:A quantitative and population genomic evaluation of the accidental pathogen hypothesis
The “Amoeboid Predator-Fungal Animal Virulence Hypothesis” posits that interactions with environmental phagocytes shape the evolution of virulence traits in fungal pathogens. In this hypothesis, selection to avoid predation by amoeba inadvertently selects for traits that contribute to fungal escape from phagocytic immune cells. Here, we investigate this hypothesis in the human fungal pathogens Cryptococcus neoformans and Cryptococcus deneoformans. Applying quantitative trait locus (QTL) mapping and comparative genomics, we discovered a cross-species QTL region that is responsible for variation in resistance to amoeba predation. In C. neoformans, this same QTL was found to have pleiotropic effects on melanization, an established virulence factor. Through fine mapping and population genomic comparisons, we identified the gene encoding the transcription factor Bzp4 that underlies this pleiotropic QTL and we show that decreased expression of this gene reduces melanization and increases susceptibility to amoeba predation. Despite the joint effects of BZP4 on amoeba resistance and melanin production, we find no relationship between BZP4 genotype and escape from macrophages or virulence in murine models of disease. Our findings provide new perspectives on how microbial ecology shapes the genetic architecture of fungal virulence, and suggests the need for more nuanced models for the evolution of pathogenesis that account for the complexities of both microbe-microbe and microbe-host interactions
The Statistics of Bulk Segregant Analysis Using Next Generation Sequencing
We describe a statistical framework for QTL mapping using bulk segregant analysis (BSA) based on high throughput, short-read sequencing. Our proposed approach is based on a smoothed version of the standard statistic, and takes into account variation in allele frequency estimates due to sampling of segregants to form bulks as well as variation introduced during the sequencing of bulks. Using simulation, we explore the impact of key experimental variables such as bulk size and sequencing coverage on the ability to detect QTLs. Counterintuitively, we find that relatively large bulks maximize the power to detect QTLs even though this implies weaker selection and less extreme allele frequency differences. Our simulation studies suggest that with large bulks and sufficient sequencing depth, the methods we propose can be used to detect even weak effect QTLs and we demonstrate the utility of this framework by application to a BSA experiment in the budding yeast Saccharomyces cerevisiae
Environmental and Genetic Determinants of Colony Morphology in Yeast
Nutrient stresses trigger a variety of developmental switches in the budding yeast Saccharomyces cerevisiae. One of the least understood of such responses is the development of complex colony morphology, characterized by intricate, organized, and strain-specific patterns of colony growth and architecture. The genetic bases of this phenotype and the key environmental signals involved in its induction have heretofore remained poorly understood. By surveying multiple strain backgrounds and a large number of growth conditions, we show that limitation for fermentable carbon sources coupled with a rich nitrogen source is the primary trigger for the colony morphology response in budding yeast. Using knockout mutants and transposon-mediated mutagenesis, we demonstrate that two key signaling networks regulating this response are the filamentous growth MAP kinase cascade and the Ras-cAMP-PKA pathway. We further show synergistic epistasis between Rim15, a kinase involved in integration of nutrient signals, and other genes in these pathways. Ploidy, mating-type, and genotype-by-environment interactions also appear to play a role in the controlling colony morphology. Our study highlights the high degree of network reuse in this model eukaryote; yeast use the same core signaling pathways in multiple contexts to integrate information about environmental and physiological states and generate diverse developmental outputs
HAMSTER: visualizing microarray experiments as a set of minimum spanning trees
<p>Abstract</p> <p>Background</p> <p>Visualization tools allow researchers to obtain a global view of the interrelationships between the probes or experiments of a gene expression (<it>e.g. microarray</it>) data set. Some existing methods include hierarchical clustering and k-means. In recent years, others have proposed applying minimum spanning trees (MST) for microarray clustering. Although MST-based clustering is formally equivalent to the dendrograms produced by hierarchical clustering under certain conditions; visually they can be quite different.</p> <p>Methods</p> <p>HAMSTER (Helpful Abstraction using Minimum Spanning Trees for Expression Relations) is an open source system for generating a <b>set </b>of MSTs from the experiments of a microarray data set. While previous works have generated a single MST from a data set for data clustering, we recursively merge experiments and repeat this process to obtain a set of MSTs for data visualization. Depending on the parameters chosen, each tree is analogous to a snapshot of one step of the hierarchical clustering process. We scored and ranked these trees using one of three proposed schemes. HAMSTER is implemented in C++ and makes use of Graphviz for laying out each MST.</p> <p>Results</p> <p>We report on the running time of HAMSTER and demonstrate using data sets from the NCBI Gene Expression Omnibus (GEO) that the images created by HAMSTER offer insights that differ from the dendrograms of hierarchical clustering. In addition to the C++ program which is available as open source, we also provided a web-based version (HAMSTER<sup>+</sup>) which allows users to apply our system through a web browser without any computer programming knowledge.</p> <p>Conclusion</p> <p>Researchers may find it helpful to include HAMSTER in their microarray analysis workflow as it can offer insights that differ from hierarchical clustering. We believe that HAMSTER would be useful for certain types of gradient data sets (e.g time-series data) and data that indicate relationships between cells/tissues. Both the source and the web server variant of HAMSTER are available from <url>http://hamster.cbrc.jp/</url>.</p
2017-Maxwell-Magwene-when-sensing-is-gambling-fig6
This is a file that gives the data used to generate Figure 6. The goal of this experiment was to determine if mutation altered the diversification strategies of the plastic strain. This file was generated by process-images-fig6.R, which collates the cropped image data into a csv file
2017-Maxwell-Magwene-when-sensing-is-gambling-fig4
This is a file that gives the data used to generate Figure 4. The goal of this set of experiments was to determine if strain that was plastic to the concentration of estradiol was pursuing a bet-hedging strategy in an environment with estradiol gradients and that alternated between SC-ura and SC+5FOA selection. This file was generated by process-competitions-fig4.R
- …