26 research outputs found
Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding
We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics
Recommended from our members
The lipidated connexin mimetic peptide SRPTEKT-Hdc is a potent inhibitor of Cx43 channels with specificity for the pS368 phospho-isoform
Connexin (Cx) mimetic peptides derived from extracellular loop II sequences (e.g., Gap27: SRPTEKTIFII; Peptide5: VDCFLSRPTEKT) have been used as reversible, Cx-specific blockers of hemichannel (HCh) and gap junction channel (GJCh) function. These blockers typically require high concentrations (~5 ”M, 1 h for GJCh) to achieve inhibition. We have shown that addition of a hexadecyl (Hdc) lipid tail to the conserved SRPTEKT peptide sequence (SRPTEKT-Hdc) results in a novel, highly efficacious, and potent inhibitor of mechanically induced Ca2+-wave propagation (IC50 64.8 pM) and HCh-mediated dye uptake (IC50 45.0 pM) in Madin-Darby canine kidney cells expressing rat Cx43 (MDCK43). The lack of similar effect on dye coupling (NBD-MTMA) suggested channel conformation-specific inhibition. Here we report that SRPTEKT-Hdc inhibition of Ca2+-wave propagation, dye coupling, and dye uptake depended on the functional configuration of Cx43 as determined by phosphorylation at serine 368 (S368). Ca2+-wave propagation was enhanced in MDCK cells expressing single-site mutants of Cx43 that mimicked (MDCK43-S368D) or favored (MDCK43-S365A) phosphorylation at S368. Furthermore, SRPTEKT-Hdc potently inhibited GJCh-mediated Ca2+-wave propagation (IC50 230.4 pM), dye coupling, and HCh-mediated dye uptake in MDCK43-S368D and -S365A cells. In contrast, Ca2+-wave propagation, dye coupling, and dye uptake were largely unaffected (IC50 12.3 ΌM) by SRPTEKT-Hdc in MDCK43-S368A and -S365D cells, mutations that mimic or favor dephosphorylation at S368. Together, these data indicate that SRPTEKT-Hdc is a potent inhibitor of physiological Ca2+-wave signaling mediated specifically by the pS368 phosphorylated form of Cx43.United States Department of Health & Human Services National Institutes of Health (NIH) - USA [HL-058732, HL-131712, HL-007249, NS-073664, GM-055632]12 month embargo; published online: 7 October 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Transcranial Near-Infrared Laser Transmission (NILT) Profiles (800 nm): Systematic Comparison in Four Common Research Species.
Transcranial near-infrared laser therapy (TLT) is a promising and novel method to promote neuroprotection and clinical improvement in both acute and chronic neurodegenerative diseases such as acute ischemic stroke (AIS), traumatic brain injury (TBI), and Alzheimer's disease (AD) patients based upon efficacy in translational animal models. However, there is limited information in the peer-reviewed literature pertaining to transcranial near-infrared laser transmission (NILT) profiles in various species. Thus, in the present study we systematically evaluated NILT characteristics through the skull of 4 different species: mouse, rat, rabbit and human.Using dehydrated skulls from 3 animal species, using a wavelength of 800nm and a surface power density of 700 mW/cm2, NILT decreased from 40.10% (mouse) to 21.24% (rat) to 11.36% (rabbit) as skull thickness measured at bregma increased from 0.44 mm in mouse to 0.83 mm in rat and then 2.11 mm in rabbit. NILT also significantly increased (p<0.05) when animal skulls were hydrated (i.e. compared to dehydrated); but there was no measurable change in thickness due to hydration. In human calvaria, where mean thickness ranged from 7.19 mm at bregma to 5.91 mm in the parietal skull, only 4.18% and 4.24% of applied near-infrared light was transmitted through the skull. There was a slight (9.2-13.4%), but insignificant effect of hydration state on NILT transmission of human skulls, but there was a significant positive correlation between NILT and thickness at bregma and parietal skull, in both hydrated and dehydrated states.This is the first systematic study to demonstrate differential NILT through the skulls of 4 different species; with an inverse relationship between NILT and skull thickness. With animal skulls, transmission profiles are dependent upon the hydration state of the skull, with significantly greater penetration through hydrated skulls compared to dehydrated skulls. Using human skulls, we demonstrate a significant correlation between thickness and penetration, but there was no correlation with skull density. The results suggest that TLT should be optimized in animals using novel approaches incorporating human skull characteristics, because of significant variance of NILT profiles directly related to skull thickness
Animal Skull Transmission: Comparison of Dehydrated- Hydrated State (Surface power density: 700 mW/cm<sup>2</sup>).
<p>Hydrated state measured in air after degassing. Dehydrated state measured in air. Thickness & Mean Power Applied are provided as Mean ± SEM.</p><p>*Significantly different p<0.05. Mouse dia 2.5mm, Rat/Rabbit dia 11.7mm.</p><p>Animal Skull Transmission: Comparison of Dehydrated- Hydrated State (Surface power density: 700 mW/cm<sup>2</sup>).</p
Human Calvaria NILT Profiles (Dry State- Air Scan): Surface power density 700 mW/cm<sup>2</sup>.
<p>Measures are provided as Mean ± SEM</p><p>Human Calvaria NILT Profiles (Dry State- Air Scan): Surface power density 700 mW/cm<sup>2</sup>.</p
CT Scan Analysis of Calvaria #12â325.
<p>(A) Radio-opaque skull- Human Calvaria Measurement Point coordinates; (B) Skull Thickness Profiles and (C) Skull Density Profiles. Parametric maps of overall skull thickness and density. Vector positions for measurements are shown in A, Thickness (B) and density (C). Left panels dehydrated calvaria measurement in air; Right panels hydrated degassed measured in air.</p
Dehydrated Human Calvaria #12â325 NILT Penetration.
<p>Ventral surface of the human skull showing NILT transmission (A) and the limited diffusion pattern observed (B).</p
NILT Penetration Physical Set-up.
<p>Penetration Assembly and NILT Treatment at Bregma for example human calvaria #12â325.</p