63 research outputs found

    Investigations on an Iron Transport Pathway

    Get PDF

    Resilience and mental toughness as predictors of anxiety, depression, and mental well-being

    Get PDF
    To examine how strongly the attributes of resilience and mental toughness predicted levels of anxiety, depression, and mental well-being, a quantitative online survey of 281 adults was employed. The survey was conducted in the United Kingdom (April to June 2021) using opportunity sampling. Resilience, mental toughness, and mental well-being were measured by the 10-item Connor-Davidson resilience scale, the 10-item mental toughness questionnaire, and the 14-item Warwick-Edinburgh mental well-being scale, respectively. In addition, the hospital anxiety and depression scale (HADS) measured anxiety and depression, and the patient health questionnaire-9 (PHQ-9) was used to measure depression. Hierarchical multiple regression was used to analyze which attribute was the strongest predictor of mental health. Mental toughness was found to be a significantly stronger predictor of well-being (β=0.54) than resilience (β=0.21), of anxiety (β=-0.70 versus 0.02, respectively), of HADS depression (β=-0.52 versus -0.15), and of PHQ-9 depression (β=-0.62 versus -0.09). We propose that mental toughness may predict well-being more strongly than resilience because it is a broader construct, incorporating proactive traits that enhance well-being. The findings suggest that training and interventions that enhance mental toughness in non-clinical populations may be more effective at promoting mental well-being and reducing anxiety and depression than those that enhance resilience. Further research is required to test these practical implications and to clarify why mental toughness is a stronger predictor than resilience for positive mental health

    Nanoscale Thin Films of Niobium Oxide on Platinum Surfaces: Creating a Platform for Optimizing Material Composition and Electrochemical Stability

    Get PDF
    A nanoscale thin film of niobium oxide on a platinum substrate was evaluated for its influence on the electronic and chemical properties of the underlying platinum towards the oxygen reduction reaction with applications to proton exchange membrane fuel cells. The nanoscale thin film of niobium oxide was deposited using atomic layer deposition onto the platinum substrate. A film of niobium oxide is a chemically stable and electronically insulating material that can be used to prevent corrosion and electrochemical degradation when layers are several nanometers thick. These layers can be insulating if sufficiently thick and may not be sufficient to protect the platinum from corrosion if too thin. An ∼3 nm thin film of niobium oxide was fabricated on the platinum surface to determine its influence on the electronic and chemical properties at the interface of these materials. The atomic layer deposition process enabled a precise control over the material composition, structure, and layer thickness. The niobium oxide film was evaluated using cyclic voltammetry and electrochemical impedance spectroscopy to evaluate whether a balance could be found between the inhibition of platinum degradation and electronic insulation of the platinum for use in proton exchange membrane fuel cells. The 3 nm thin niobium oxide film was found to be sufficiently thin to permit electronic conductivity while reducing the incidence of platinum dissolution

    US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis

    Get PDF
    Non-tuberculous mycobacteria (NTM) are ubiquitous environmental organisms that can cause chronic pulmonary infection, particularly in individuals with preexisting inflammatory lung disease such as cystic fibrosis(CF). Pulmonary disease caused by NTM has emerged as a major threat to the health of individuals with CF but remains difficult to diagnose and problematic to treat. In response to this challenge, the US Cystic Fibrosis Foundation (CFF) and the European Cystic Fibrosis Society (ECFS) convened an expert panel of specialists to develop consensus recommendations for the screening, investigation, diagnosis and management of NTM pulmonary disease in individuals with CF. Nineteen experts were invited to participate in the recommendation development process. Population, Intervention, Comparison, Outcome (PICO) methodology and systematic literature reviews were employed to inform draft recommendations. An anonymous voting process was used by the committee to reach consensus. All committee members were asked to rate each statement on a scale of: 0, completely disagree, to 9, completely agree; with 80% or more of scores between 7 and 9 being considered ‘good’ agreement. Additionally, the committee solicited feedback from the CF communities in the USA and Europe and considered the feedback in the development of the final recommendation statements. Three rounds of voting were conducted to achieve 80% consensus for each recommendation statement. Through this process, we have generated a series of pragmatic, evidence-based recommendations for the screening, investigation, diagnosis and treatment of NTM infection in individuals with CF as an initial step in optimising management for this challenging condition

    The scene of the crime: inventing the serial killer

    Get PDF
    This article examines the meanings of the crime scene in serial killings, and the tensions between the real and the imagined in the circulation of those meanings. Starting with the Whitechapel Murders of 1888 it argues that they, as well as forming an origin for the construction of the identity of 'the serial killer', initiate certain ideas about the relationship of subjects to spaces and the existence of the self in the modern urban landscape. It suggests that these ideas come to play an integral part in the contemporary discourse of serial killing, both in the popular imagination and in professional analysis. Examining the Whitechapel Murders, more recent cases and modern profiling techniques, it argues that popular and professional representations of crime scenes reveal more of social anxieties about the nature of the public and the private than they do about serial killers. It suggests that 'the serial killer' is not a coherent type, but an invention produced from the confusions of persons and places. Copyright 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution

    Piezo1 integration of vascular architecture with physiological force

    Get PDF
    The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic¹⁻⁵. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca²⁺-permeable non-selective cationic channels for detection of noxious mechanical impact⁶⁻⁸. Here we show Piezo1 (Fam38a) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. The importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear-stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx there was protease activation and spatial reorganization of endothelial cells to the polarity of the applied force. The data suggest that Piezo1 channels function as pivotal integrators in vascular biology
    corecore