11 research outputs found

    A Compact Cold-Atom Interferometer with a High Data-Rate Grating Magneto-Optical Trap and a Photonic-Integrated-Circuit-Compatible Laser System

    Full text link
    The extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems. Here we describe several component technologies and a laser system architecture to enable a path to such miniaturization. We developed a custom, compact titanium vacuum package containing a microfabricated grating chip for a tetrahedral grating magneto-optical trap (GMOT) using a single cooling beam. In addition, we designed a multi-channel photonic-integrated-circuit-compatible laser system implemented with a single seed laser and single sideband modulators in a time-multiplexed manner, reducing the number of optical channels connected to the sensor head. In a compact sensor head containing the vacuum package, sub-Doppler cooling in the GMOT produces 15 uK temperatures, and the GMOT can operate at a 20 Hz data rate. We validated the atomic coherence with Ramsey interferometry using microwave spectroscopy, then demonstrated a light-pulse atom interferometer in a gravimeter configuration for a 10 Hz measurement data rate and T = 0 - 4.5 ms interrogation time, resulting in Δ\Delta g / g = 2.0e-6. This work represents a significant step towards deployable cold-atom inertial sensors under large amplitude motional dynamics.Comment: 21 pages, 10 figure

    Left atrial sphericity as a marker of atrial remodeling: Comparison of atrial fibrillation patients and controls

    No full text
    BACKGROUND: Left atrial (LA) sphericity has been proposed as a more sensitive marker of atrial fibrillation (AF)-associated atrial remodeling compared to traditional markers such as LA size. However, mechanisms that underlie changes in LA sphericity are not fully understood and studies investigating the predictive value of LA sphericity for AF ablation outcome have yielded conflicting results. The present study aimed to assess correlates of LA sphericity and to compare LA sphericity in subjects with and without AF. METHODS: Measures of LA size (LA diameter, LA volume, LA volume index), LA sphericity and thoracic anteroposterior diameter (APd) at the level of the LA were determined using computed tomography (CT) imaging data in 293 AF patients (62% paroxysmal AF) and 110 controls. RESULTS: LA diameter (40.1 ± 6.8 mm vs. 35.2 ± 5.1 mm; p < 0.001), LA volume (116.0 ± 33.0 ml vs. 80.3 ± 22.6 ml; p < 0.001) and LA volume index (56.1 ± 15.3 ml/m2 vs. 41.6 ± 11.1 ml/m2; p < 0.001) were significantly larger in AF patients compared to controls, also after adjustment for covariates. LA sphericity did not differ between AF patients and controls (83.7 ± 2.9 vs. 83.9 ± 2.4; p = 0.642). Multivariable linear regression analysis demonstrated that LA diameter, LA volume, female sex, body length and thoracic APd were independently associated with LA sphericity. CONCLUSIONS: The present study suggests that thoracic constraints rather than the presence of AF determine LA sphericity, implying LA sphericity to be unsuitable as a marker of AF-related atrial remodeling

    Domestic Regulation and International Trade: Where's the Race?--Lessons From Telecommunications and Export Controls

    No full text

    Abstracts of papers and posters Pharmacological Meeting

    No full text
    corecore