207 research outputs found

    Strings on type IIB pp-wave backgrounds with interacting massive theories on the worldsheet

    Full text link
    We consider superstring theories on pp-wave backgrounds which result in an integrable N=(2,2){\cal N}=(2,2) supersymmetric Landau-Ginzburg theory on the worldsheet. We obtain exact eigenvalues of the light-cone gauge superstring hamiltonian in the massive and interacting world-sheet theory with superpotential Z3ZZ^3-Z. We find the modes of the supergravity part of the string spectrum, and their space-time interpretation. Because the system is effectively at strong coupling on the worldsheet, these modes are not in one-to-one correspondence with the usual type IIB supergravity modes in the p0p_{-} \to 0 limit. However, the above correspondence holds in the α0\alpha'\to 0 limit.Comment: 20 pages, 1 figure; minor changes, comments adde

    BSL2-compliant lethal mouse model of SARS-CoV-2 and variants of concern to evaluate therapeutics targeting the Spike protein

    Get PDF
    Since first reported in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is rapidly acquiring mutations, particularly in the spike protein, that can modulate pathogenicity, transmission and antibody evasion leading to successive waves of COVID19 infections despite an unprecedented mass vaccination necessitating continuous adaptation of therapeutics. Small animal models can facilitate understanding host-pathogen interactions, target selection for therapeutic drugs, and vaccine development, but availability and cost of studies in BSL3 facilities hinder progress. To generate a BSL2-compatibl

    'Countries in the Air': Travel and Geomodernism in Louis MacNeice's BBC Features

    Get PDF
    In the middle stretch of his twenty-two-year BBC career, the poet and producer Louis MacNeice earned a reputation as one of the ‘undisputed masters of creative sound broadcasting’, a reputation derived, in part, from a huge range of radio features that were founded upon his journeys abroad. Through close examination of some of his most significant overseas soundscapes – including Portrait of Rome (1947) and Portrait of Delhi (1948) – this article will consider the role and function of travel in shaping MacNeice’s engagement with the radio feature as a modernist form at a particular transcultural moment when Britain moved through the end of the Second World War and the eventual disintegration of its empire

    The Semileptonic Decays BπlνB\to\pi l\nu and DπlνD\to\pi l\nu from Lattice QCD

    Full text link
    We present a lattice QCD calculation of the form factors and differential decay rates for semileptonic decays of the heavy-light mesons BB and DD to the final state πlν\pi l\nu. The results are obtained with three methodological improvements over previous lattice calculations: a matching procedure that reduces heavy-quark lattice artifacts, the first study of lattice-spacing dependence, and the introduction of kinematic cuts to reduce model dependence. We show that the main systematics are controllable (within the quenched approximation) and outline how the calculations could be improved to aid current experiments in the determination of~Vub|V_{ub}| and~Vcd|V_{cd}|.Comment: 35 pp, 12 fig

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure

    Variation in the RAD51 gene and familial breast cancer

    Get PDF
    INTRODUCTION: Human RAD51 is a homologue of the Escherichia coli RecA protein and is known to function in recombinational repair of double-stranded DNA breaks. Mutations in the lower eukaryotic homologues of RAD51 result in a deficiency in the repair of double-stranded DNA breaks. Loss of RAD51 function would therefore be expected to result in an elevated mutation rate, leading to accumulation of DNA damage and, hence, to increased cancer risk. RAD51 interacts directly or indirectly with a number of proteins implicated in breast cancer, such as BRCA1 and BRCA2. Similar to BRCA1 mice, RAD51(-/- )mice are embryonic lethal. The RAD51 gene region has been shown to exhibit loss of heterozygosity in breast tumours, and deregulated RAD51 expression in breast cancer patients has also been reported. Few studies have investigated the role of coding region variation in the RAD51 gene in familial breast cancer, with only one coding region variant – exon 6 c.449G>A (p.R150Q) – reported to date. METHODS: All nine coding exons of the RAD51 gene were analysed for variation in 46 well-characterised, BRCA1/2-negative breast cancer families using denaturing high-performance liquid chromatography. Genotyping of the exon 6 p.R150Q variant was performed in an additional 66 families. Additionally, lymphoblastoid cell lines from breast cancer patients were subjected to single nucleotide primer extension analysis to assess RAD51 expression. RESULTS: No coding region variation was found, and all intronic variation detected was either found in unaffected controls or was unlikely to have functional consequences. Single nucleotide primer extension analysis did not reveal any allele-specific changes in RAD51 expression in all lymphoblastoid cell lines tested. CONCLUSION: Our study indicates that RAD51 is not a major familial breast cancer predisposition gene

    BSL2-compliant lethal mouse model of SARS-CoV-2 and variants of concern to evaluate therapeutics targeting the Spike protein

    Get PDF
    Since first reported in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is rapidly acquiring mutations, particularly in the spike protein, that can modulate pathogenicity, transmission and antibody evasion leading to successive waves of COVID19 infections despite an unprecedented mass vaccination necessitating continuous adaptation of therapeutics. Small animal models can facilitate understanding host-pathogen interactions, target selection for therapeutic drugs, and vaccine development, but availability and cost of studies in BSL3 facilities hinder progress. To generate a BSL2-compatible in vivo system that specifically recapitulates spike protein mediated disease we used replication competent, GFP tagged, recombinant Vesicular Stomatitis Virus where the VSV glycoprotein was replaced by the SARS-CoV-2 spike protein (rVSV-SARS2-S). We show that infection requires hACE2 and challenge of neonatal but not adult, K18-hACE2 transgenic mice (hACE2tg) leads to productive infection of the lungs and brains. Although disease progression was faster in SARS-CoV-2 infected mice, infection with both viruses resulted in neuronal infection and encephalitis with increased expression of Interferon-stimulated Irf7, Bst2, Ifi294, as well as CxCL10, CCL5, CLC2, and LILRB4, and both models were uniformly lethal. Further, prophylactic treatment targeting the Spike protein (Receptor Binding Domain) with antibodies resulted in similar levels of protection from lethal infection against rVSV-SARS2-S and SARS-CoV-2 viruses. Strikingly, challenge of neonatal hACE2tg mice with SARS-CoV-2 Variants of Concern (SARS-CoV-2-α, -β, ϒ, or Δ) or the corresponding rVSV-SARS2-S viruses (rVSV-SARS2-Spike-α, rVSV-SARS2-Spike-β, rVSV-SARS2-Spike-ϒ or rVSV-SARS2-Spike-Δ) resulted in increased lethality, suggesting that the Spike protein plays a key role in determining the virulence of each variant. Thus, we propose that rVSV-SARS2-S virus can be used to understand the effect of changes to SARS-CoV-2 spike protein on infection and to evaluate existing or experimental therapeutics targeting spike protein of current or future VOC of SARS-CoV-2 under BSL-2 conditions
    corecore