1,406 research outputs found

    Optimal Estimates on the Propagation of Reactions with Fractional Diffusion

    Full text link
    We study the reaction-fractional-diffusion equation ut+(−Δ)su=f(u)u_t+(-\Delta)^{s} u=f(u) with ignition and monostable reactions ff, and s∈(0,1)s\in(0,1). We obtain the first optimal bounds on the propagation of front-like solutions in the cases where no traveling fronts exist. Our results cover most of these cases, and also apply to propagation from localized initial data

    Computable decision making on the reals and other spaces via partiality and nondeterminism

    Full text link
    Though many safety-critical software systems use floating point to represent real-world input and output, programmers usually have idealized versions in mind that compute with real numbers. Significant deviations from the ideal can cause errors and jeopardize safety. Some programming systems implement exact real arithmetic, which resolves this matter but complicates others, such as decision making. In these systems, it is impossible to compute (total and deterministic) discrete decisions based on connected spaces such as R\mathbb{R}. We present programming-language semantics based on constructive topology with variants allowing nondeterminism and/or partiality. Either nondeterminism or partiality suffices to allow computable decision making on connected spaces such as R\mathbb{R}. We then introduce pattern matching on spaces, a language construct for creating programs on spaces, generalizing pattern matching in functional programming, where patterns need not represent decidable predicates and also may overlap or be inexhaustive, giving rise to nondeterminism or partiality, respectively. Nondeterminism and/or partiality also yield formal logics for constructing approximate decision procedures. We implemented these constructs in the Marshall language for exact real arithmetic.Comment: This is an extended version of a paper due to appear in the proceedings of the ACM/IEEE Symposium on Logic in Computer Science (LICS) in July 201

    Symmetry breaking and functional incompleteness in biological systems

    Get PDF
    Symmetry-based explanations using symmetry breaking (SB) as the key explanatory tool have complemented and replaced traditional causal explanations in various domains of physics. The process of spontaneous SB is now a mainstay of contemporary explanatory accounts of large chunks of condensed-matter physics, quantum field theory, nonlinear dynamics, cosmology, and other disciplines. A wide range of empirical research into various phenomena related to symmetries and SB across biological scales has accumulated as well. Led by these results, we identify and explain some common features of the emergence, propagation, and cascading of SB-induced layers across the biosphere. These features are predicated on the thermodynamic openness and intrinsic functional incompleteness of the systems at stake and have not been systematically analyzed from a general philosophical and methodological perspective. We also consider possible continuity of SB across the physical and biological world and discuss the connection between Darwinism and SB-based analysis of the biosphere and its history

    Parity Broken Chiral Spin Dynamics in Ba3_3NbFe3_3Si2_2O14_{14}

    Get PDF
    The spin wave excitations emerging from the chiral helically modulated 120∘^{\circ} magnetic order in a langasite Ba3_3NbFe3_3Si2_2O14_{14} enantiopure crystal were investigated by unpolarized and polarized inelastic neutron scattering. A dynamical fingerprint of the chiral ground state is obtained, singularized by (i) spectral weight asymmetries answerable to the structural chirality and (ii) a full chirality of the spin correlations observed over the whole energy spectrum. The intrinsic chiral nature of the spin waves elementary excitations is shown in absence of macroscopic time reversal symmetry breaking

    ORIE Nigeria: Quantitative Impact Evaluation Baseline Report

    Get PDF
    This report presents the findings from the baseline survey of the quantitative impact evaluation of the Working to Improve Nutrition in Northern Nigeria (WINNN) Programme interventions in Northern Nigeria. The household survey data collection was conducted in June 2013 and a final round of data collection is scheduled for June 2016. Both baseline and endline survey data will be used to estimate the collective impact of the WINNN Programme interventions that are focused at the level of the Local Government Area – Community Management of Acute Malnutrition (CMAM) and Infant and Young Child Feeding (IYCF).UK Ai

    Cytokinin response factor 6 represses cytokinin-associated genes during oxidative stress

    Get PDF
    Cytokinin is a phytohormone that is well known for its roles in numerous plant growth and developmental processes, yet it has also been linked to abiotic stress response in a less defined manner. Arabidopsis (Arabidopsis thaliana) Cytokinin Response Factor 6 (CRF6) is a cytokinin-responsive AP2/ERF-family transcription factor that, through the cytokinin signaling pathway, plays a key role in the inhibition of dark-induced senescence. CRF6 expression is also induced by oxidative stress, and here we show a novel function for CRF6 in relation to oxidative stress and identify downstream transcriptional targets of CRF6 that are repressed in response to oxidative stress. Analysis of transcriptomic changes in wild-type and crf6 mutant plants treated with H2O2 identified CRF6-dependent differentially expressed transcripts, many of which were repressed rather than induced. Moreover, many repressed genes also show decreased expression in 35S:CRF6 overexpressing plants. Together, these findings suggest that CRF6 functions largely as a transcriptional repressor. Interestingly, among the H2O2 repressed CRF6-dependent transcripts was a set of five genes associated with cytokinin processes: (signaling) ARR6, ARR9, ARR11, (biosynthesis) LOG7, and (transport) ABCG14. We have examined mutants of these cytokinin-associated target genes to reveal novel connections to oxidative stress. Further examination of CRF6-DNA interactions indicated that CRF6 may regulate its targets both directly and indirectly. Together, this shows that CRF6 functions during oxidative stress as a negative regulator to control this cytokinin-associated module of CRF6-dependent genes and establishes a novel connection between cytokinin and oxidative stress response

    Combined bidding at power and ancillary service markets

    Get PDF
    Power and ancillary service markets are strongly coupled. However, at the moment auctions are organized in such a manner that the coupling is not taken into account. Every market participant submits bids at power and/or AS markets without possibility to adjust with respect to the outcome of the other market. Inexact approximations of the actual market price induce deviations from the optimal social welfare value. In this paper, we firstly describe and analyze the consequences of power and ancillary service market coupling. Secondly, we present two different market design strategies, both of which are based on the idea of iterative auction and have the goal to optimally account for power and AS coupling, enabling the overall system to maximize its social welfare. An illustrative example is used to present potential benefits and downsides that might arise as a result of introducing proposed market arrangements

    The Higher Sensitivity of GABAergic Compared to Glutamatergic Neurons to Growth-Promoting C3bot Treatment Is Mediated by Vimentin

    Get PDF
    The current study investigates the neurotrophic effects of Clostridium botulinum C3 transferase (C3bot) on highly purified, glia-free, GABAergic, and glutamatergic neurons. Incubation with nanomolar concentrations of C3bot promotes dendrite formation as well as dendritic and axonal outgrowth in rat GABAergic neurons. A comparison of C3bot effects on sorted mouse GABAergic and glutamatergic neurons obtained from newly established NexCre;Ai9xVGAT Venus mice revealed a higher sensitivity of GABAergic cells to axonotrophic and dendritic effects of C3bot in terms of process length and branch formation. Protein biochemical analysis of known C3bot binding partners revealed comparable amounts of β1 integrin in both cell types but a higher expression of vimentin in GABAergic neurons. Accordingly, binding of C3bot to GABAergic neurons was stronger than binding to glutamatergic neurons. A combinatory treatment of glutamatergic neurons with C3bot and vimentin raised the amount of bound C3bot to levels comparable to the ones in GABAergic neurons, thereby confirming the specificity of effects. Overall, different surface vimentin levels between GABAergic and glutamatergic neurons exist that mediate neurotrophic C3bot effects

    Gene expression regulation by the Chromodomain helicase DNA-binding protein 9 (CHD9) chromatin remodeler is dispensable for murine development.

    No full text
    Chromodomain helicase DNA-binding (CHD) chromatin remodelers regulate transcription and DNA repair. They govern cell-fate decisions during embryonic development and are often deregulated in human pathologies. Chd1-8 show upon germline disruption pronounced, often developmental lethal phenotypes. Here we show that contrary to Chd1-8 disruption, Chd9-/-animals are viable, fertile and display no developmental defects or disease predisposition. Germline deletion of Chd9 only moderately affects gene expression in tissues and derived cells, whereas acute depletion in human cancer cells elicits more robust changes suggesting that CHD9 is a highly context-dependent chromatin regulator that, surprisingly, is dispensable for mouse development

    Price-based control of electrical power systems

    Get PDF
    In this chapter we present the price-based control as a suitable approach to solve some of the challenging problems facing future, market-based power sys tems. On the example of economically optimal power balance and transmission network congestion control, we present how global objectives and constraints can in real-time be translated into time-varying prices which adequately reflect the cur rent state of the physical system. Furthermore, we show how the price signals can be efficiently used for control purposes. Becoming the crucial control signals, the timevarying prices are employed to optimally shape, coordinate and synchronize local, profit-driven behaviors of producers/consumers to mutually reinforce and guarantee global objectives and constraints. The main focus in the chapter is on exploiting specific structural properties of the global system constraints in the synthesis of price-based controllers. The global constraints arise from sparse and highly struc tured power flow equations. Preserving this structure in the controller synthesis implies that the devised solutions can be implemented in a distributed fashion
    • …
    corecore