109 research outputs found

    A genome-wide association scan of RR and QT interval duration in 3 European genetically isolated populations:the EUROSPAN project

    Get PDF
    We set out to identify common genetic determinants of the length of the RR and QT intervals in 2325 individuals from isolated European populations.We analyzed the heart rate at rest, measured as the RR interval, and the length of the corrected QT interval for association with 318 237 single-nucleotide polymorphisms. The RR interval was associated with common variants within GPR133, a G-protein-coupled receptor (rs885389, P=3.9 x 10(-8)). The QT interval was associated with the earlier reported NOS1AP gene (rs2880058, P=2.00 x 10(-10)) and with a region on chromosome 13 (rs2478333, P=4.34 x 10(-8)), which is 100 kb from the closest known transcript LOC730174 and has previously not been associated with the length of the QT interval.Our results suggested an association between the RR interval and GPR133 and confirmed an association between the QT interval and NOS1AP

    Genetic Determinants of Circulating Sphingolipid Concentrations in European Populations

    Get PDF
    Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI), cardiomyopathy, pancreatic beta-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS) between 318,237 single-nucleotide polymorphisms (SNPs) and levels of circulating sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), and glucosylceramide (GluCer) single lipid species (33 traits); and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32) in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08 x 10(-66). The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1-3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3) associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10(-4) or less). Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be tested for a role in the development of common cardiovascular, metabolic, neurological, and psychiatric diseases

    A meta-analysis of genome-wide data from five European isolates reveals an association of COL22A1, SYT1, and GABRR2 with serum creatinine level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum creatinine (S<sub>CR</sub>) is the most important biomarker for a quick and non-invasive assessment of kidney function in population-based surveys. A substantial proportion of the inter-individual variability in S<sub>CR </sub>level is explicable by genetic factors.</p> <p>Methods</p> <p>We performed a meta-analysis of genome-wide association studies of S<sub>CR </sub>undertaken in five population isolates ('discovery cohorts'), all of which are part of the European Special Population Network (EUROSPAN) project. Genes showing the strongest evidence for an association with S<sub>CR </sub>(candidate loci) were replicated in two additional population-based samples ('replication cohorts').</p> <p>Results</p> <p>After the discovery meta-analysis, 29 loci were selected for replication. Association between S<sub>CR </sub>level and polymorphisms in the collagen type XXII alpha 1 (<it>COL22A1</it>) gene, on chromosome 8, and in the synaptotagmin-1 (<it>SYT1</it>) gene, on chromosome 12, were successfully replicated in the replication cohorts (p value = 1.0 × 10<sup>-6 </sup>and 1.7 × 10<sup>-4</sup>, respectively). Evidence of association was also found for polymorphisms in a locus including the gamma-aminobutyric acid receptor rho-2 (<it>GABRR2</it>) gene and the ubiquitin-conjugating enzyme E2-J1 (<it>UBE2J1</it>) gene (replication p value = 3.6 × 10<sup>-3</sup>). Previously reported findings, associating glomerular filtration rate with SNPs in the uromodulin (<it>UMOD</it>) gene and in the schroom family member 3 (<it>SCHROOM3</it>) gene were also replicated.</p> <p>Conclusions</p> <p>While confirming earlier results, our study provides new insights in the understanding of the genetic basis of serum creatinine regulatory processes. In particular, the association with the genes <it>SYT1 </it>and <it>GABRR2 </it>corroborate previous findings that highlighted a possible role of the neurotransmitters GABA<sub>A </sub>receptors in the regulation of the glomerular basement membrane and a possible interaction between GABA<sub>A</sub>receptors and synaptotagmin-I at the podocyte level.</p

    Trans-ethnic Mendelian-randomization study reveals causal relationships between cardiometabolic factors and chronic kidney disease.

    Get PDF
    Funder: Government Department of BusinessFunder: Energy and Industrial Strategy (BEIS)Funder: Vice-Chancellor Fellowship from the University of BristolFunder: Shanghai Thousand Talents ProgramFunder: Academy of Medical Sciences (AMS) Springboard AwardFunder: BBSRC Innovation fellowshipFunder: NIHR Biomedical Research Centre at University Hospitals Bristol NHS Foundation Trust and the University of BristolBACKGROUND: This study was to systematically test whether previously reported risk factors for chronic kidney disease (CKD) are causally related to CKD in European and East Asian ancestries using Mendelian randomization. METHODS: A total of 45 risk factors with genetic data in European ancestry and 17 risk factors in East Asian participants were identified as exposures from PubMed. We defined the CKD by clinical diagnosis or by estimated glomerular filtration rate of 25 kg/m2. CONCLUSIONS: Eight cardiometabolic risk factors showed causal effects on CKD in Europeans and three of them showed causality in East Asians, providing insights into the design of future interventions to reduce the burden of CKD.This research has been conducted using the UK Biobank resource under Application Numbers ‘40135’ and ‘15825’. J.Z. is funded by a Vice-Chancellor Fellowship from the University of Bristol. This research was also funded by the UK Medical Research Council Integrative Epidemiology Unit [MC_UU_00011/1, MC_UU_00011/4 and MC_UU_00011/7]. J.Z. is supported by the Academy of Medical Sciences (AMS) Springboard Award, the Wellcome Trust, the Government Department of Business, Energy and Industrial Strategy (BEIS), the British Heart Foundation and Diabetes UK [SBF006\1117]. This study was funded/supported by the NIHR Biomedical Research Centre at University Hospitals Bristol NHS Foundation Trust and the University of Bristol (G.D.S., T.R.G. and R.E.W.). This study received funding from the UK Medical Research Council [MR/R013942/1]. J.Z., Y.M.Z. and T.R.G are funded by a BBSRC Innovation fellowship. J.Z. is supported by the Shanghai Thousand Talents Program. Y.M.Z. is supported by the National Natural Science Foundation of China [81800636]. H.Z. is supported by the Training Program of the Major Research Plan of the National Natural Science Foundation of China [91642120], a grant from the Science and Technology Project of Beijing, China [D18110700010000] and the University of Michigan Health System–Peking University Health Science Center Joint Institute for Translational and Clinical Research [BMU2017JI007]. N.F. is supported by the National Institutes of Health awards R01-MD012765, R01-DK117445 and R21-HL140385. R.C. is funded by a Wellcome Trust GW4 Clinical Academic Training Fellowship [WT 212557/Z/18/Z]. The Trøndelag Health Study (the HUNT Study) is a collaboration between HUNT Research Centre (Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology), Trøndelag County Council, Central Norway Regional Health Authority and the Norwegian Institute of Public Health. M.C.B. is supported by the UK Medical Research Council (MRC) Skills Development Fellowship [MR/P014054/1]. S.F. is supported by a Wellcome Trust PhD studentship [WT108902/Z/15/Z]. Q.Y. is funded by a China Scholarship Council PhD scholarship [CSC201808060273]. Y.C. was supported by the National Key R&D Program of China [2016YFC0900500, 2016YFC0900501 and 2016YFC0900504]. The China Kadoorie Biobank baseline survey and the first resurvey were supported by a grant from the Kadoorie Charitable Foundation in Hong Kong. The long-term follow-up is supported by grants from the UK Wellcome Trust [202922/Z/16/Z, 088158/Z/09/Z and 104085/Z/14/Z]. Japan-Kidney-Biobank was supported by AMED under Grant Number 20km0405210. P.C.H. is supported by Cancer Research UK [grant number: C18281/A19169]. A.K. was supported by DFG KO 3598/5–1. N.F. is supported by NIH awards R01-DK117445, R01-MD012765 and R21-HL140385. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    The genetic study of three population microisolates in South Tyrol (MICROS): study design and epidemiological perspectives

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing evidence of the important role that small, isolated populations could play in finding genes involved in the etiology of diseases. For historical and political reasons, South Tyrol, the northern most Italian region, includes several villages of small dimensions which remained isolated over the centuries.</p> <p>Methods</p> <p>The MICROS study is a population-based survey on three small, isolated villages, characterized by: old settlement; small number of founders; high endogamy rates; slow/null population expansion. During the stage-1 (2002/03) genealogical data, screening questionnaires, clinical measurements, blood and urine samples, and DNA were collected for 1175 adult volunteers. Stage-2, concerning trait diagnoses, linkage analysis and association studies, is ongoing. The selection of the traits is being driven by expert clinicians. Preliminary, descriptive statistics were obtained. Power simulations for finding linkage on a quantitative trait locus (QTL) were undertaken.</p> <p>Results</p> <p>Starting from participants, genealogies were reconstructed for 50,037 subjects, going back to the early 1600s. Within the last five generations, subjects were clustered in one pedigree of 7049 subjects plus 178 smaller pedigrees (3 to 85 subjects each). A significant probability of familial clustering was assessed for many traits, especially among the cardiovascular, neurological and respiratory traits. Simulations showed that the MICROS pedigree has a substantial power to detect a LOD score ≥ 3 when the QTL specific heritability is ≥ 20%.</p> <p>Conclusion</p> <p>The MICROS study is an extensive, ongoing, two-stage survey aimed at characterizing the genetic epidemiology of Mendelian and complex diseases. Our approach, involving different scientific disciplines, is an advantageous strategy to define and to study population isolates. The isolation of the Alpine populations, together with the extensive data collected so far, make the MICROS study a powerful resource for the study of diseases in many fields of medicine. Recent successes and simulation studies give us confidence that our pedigrees can be valuable both in finding new candidates loci and to confirm existing candidate genes.</p

    Patients in long-term maintenance therapy for drug use in Italy: analysis of some parameters of social integration and serological status for infectious diseases in a cohort of 1091 patients

    Get PDF
    BACKGROUND: Heroin addiction often severely disrupts normal social functioning. The aims of this multi-centre study of heroin users in long-term replacement treatment were: i) to provide information on aspects of social condition such as employment, educational background, living status, partner status and any history of drug addiction for partners, comparing these data with that of the general population; ii) to assess the prevalence of hepatitis, syphilis and HIV, because serological status could be a reflection of the social conditions of patients undergoing replacement treatment for drug addiction; iii) to analyse possible relationships between social conditions and serological status. METHODS: A cross-sectional study was carried out in sixteen National Health Service Drug Addiction Units in northern Italy. The data were collected from February 1, 2002 to August 31, 2002. Recruitment eligibility was: maintenance treatment with methadone or buprenorphine, treatment for the previous six months, and at least 18 years of age. In the centres involved in the study no specific criteria or regulations were established concerning the duration of replacement therapy. Participants underwent a face-to-face interview. RESULTS: The conditions of 1091 drug treatment patients were evaluated. The mean duration of drug use was 14.5 years. Duration was shorter in females, in subjects with a higher educational background, and in stable relationships. Most (68%) had completed middle school (11–14 years of age). Seventy-nine percent were employed and 16% were unemployed. Fifty percent lived with their parents, 34% with a partner and 14% alone. Males lived more frequently with their parents (55%), and females more frequently with a partner (60%). Sixty-seven percent of male patients with a stable relationship had a partner who had never used heroin. HCV prevalence was 72%, HBV antibodies were detected in 42% of patients, while 30% had been vaccinated; 12.5% of subjects were HIV positive and 1.5% were positive for TPHA. CONCLUSION: A significant percentage of heroin users in treatment for opiate addiction in the cohort study have characteristics which indicate reasonable integration within broader society. We posit that the combination of effective treatment and a setting of economic prosperity may enhance the social integration of patients with a history of heroin use
    corecore