3 research outputs found
Powering lights with piezoelectric energy harvesting floors
The present work introduces a new technology for converting energy from steps into electricity. It starts with a study of the mechanical energy available from steps in a busy corridor. The subsequent development efforts and devices are presented, with an iterative approach to prototyping. Methods for enhancing the piezoelectric conversion efficiency have been determined as a part of the process and are introduced in the present article. Capitalizing on these findings, we have fabricated energy-harvesting devices for stairs that power embedded emergency lighting. The typical working unit comprises an energy-harvesting stair nosing, a power management circuit, and an embedded light-emitting diode that lights the tread in front of the user with an illuminance corresponding to emergency standards. The stair nosing generates up to 17.7 mJ of useful electrical energy per activation to provide up to 10.6 seconds of light. The corresponding energy density is 0.49 J per meter square and per step, with an 8.5 mm thick active layer
Business process re-engineering to digitalise quality control checks for reducing physical waste and resource use in a food company
Quality control is an essential element of manufacturing operations that reduces product defects and provides excellent products of the right specifications to the end consumer. Industry 4.0 solutions, such as digitalisation, along with lean manufacturing tools, may support quality control operations. This paper presents a case study of a food company wherein quality control checks were optimised using business process re-engineering to reduce physical waste and resource usage. Following close analysis of the company’s pack-house operations, it was proposed to adopt elements of Industry 4.0 by digitalising the quality control process. Implementing such a solution led to a reduction in the time needed to complete recorded checks, an increase in the time the pack-house quality control team spends with packers on the production lines, and the facilitation of defects identification. It also ensured that the product met the customers’ specifications and reduced the likelihood of rejection at the customers’ depot. The new system also enabled monitoring of each line in real-time and gathering of additional information faster and more accurately. This article proves how employing lean principles in combination with Industry 4.0 technologies can lead to savings in resources and a reduction in waste, which leads to improvements in operational efficiency