44 research outputs found

    Sustained transatlantic coastal observations Report: Strategy for transatlantic sustained measurements in the coastal ocean, based on the strengthened forum for interaction between US IOOS, GOOS regional alliances and EuroGOOS

    Get PDF
    DoA: Task 4.4 Transatlantic cooperation and sustainability This task will enhance the European Forum for Coastal Technologies and establish a formal link between the US Alliance for Coastal Technologies and the European Forum for Coastal Technologies. We will strengthen links with coastal observing initiatives around the Atlantic basin including links between EuroGOOS ROOSes, and the regional operational oceanographic systems in the US and Canada. In doing so, we will create a forum for interaction between US IOOS, GOOS regional alliances, and EuroGOOS. The task will develop a strategy for transatlantic sustained measurements in the coastal ocean, building on developments such as OceanObs, Coastal GOOS and JERICO FP7 project, to deliver data for social and economic benefi

    Toward a European coastal observing network to provide better answers to science and to societal challenges : The JERICO research infrastructure

    Get PDF
    The coastal area is the most productive and dynamic environment of the world ocean, offering significant resources and services for mankind. As exemplified by the UN Sustainable Development Goals, it has a tremendous potential for innovation and growth in blue economy sectors. Due to the inherent complexity of the natural system, the answers to many scientific and societal questions are unknown, and the impacts of the cumulative stresses imposed by anthropogenic pressures (such as pollution) and climate change are difficult to assess and forecast. A major challenge for the scientific community making observations of the coastal marine environment is to integrate observations of Essential Ocean Variables for physical, biogeochemical, and biological processes on appropriate spatial and temporal scales, and in a sustained and scientifically based manner. Coastal observations are important for improving our understanding of the complex biotic and abiotic processes in many fields of research such as ecosystem science, habitat protection, and climate change impacts. They are also important for improving our understanding of the impacts of human activities such as fishing and aquaculture, and underpin risk monitoring and assessment. The observations enable us to better understand ecosystems and the societal consequences of overfishing, disease (particularly shellfish), loss of biodiversity, coastline withdrawal, and ocean acidification, amongst others. The European coastal observing infrastructure JERICO-RI, has gathered and organized key communities embracing new technologies and providing a future strategy, with recommendations on the way forward and on governance. Particularly, the JERICO community acknowledges that the main providers of coastal observations are: (1) research infrastructures, (2) national monitoring programs, and (3) monitoring activities performed by marine industries. The scope of this paper is to present some key elements of our coastal science strategy to build it on long term. It describes how the pan-European JERICO community is building an integrated and innovation-driven coastal research infrastructure for Europe. The RI embraces emerging technologies which will revolutionize the way the ocean is observed. Developments in biotechnology (molecular and optical sensors, omics-based biology) will soon provide direct and online access to chemical and biological variables including in situ quantification of harmful algae and contaminants. Using artificial intelligence (AI), Internet of Things will soon provide operational platforms and autonomous and remotely operated smart sensors. Embracing key technologies, high quality open access data, modeling and satellite observations, it will support sustainable blue growth, warning and forecasting coastal services and healthy marine ecosystem. JERICO-FP7 is the European 7th framework project named JERICO under Grant Agreement No. 262584. JERICO-NEXT is the European Horizon-2020 project under Grant Agreement No. 654410. JERICO-RI is the European coastal observing research infrastructure established and structured through JERICO-FP7 and JERICO-NEXT, and beyond

    Le rhumatisme psoriasique (diagnostic et thérapeutique)

    No full text
    Le rhumatisme psoriasique est une pathologie inflammatoire chronique invalidante. Son diagnostic n'étant pas toujours aisé, le nombre de personnes touchées est trÚs certainement sous-estimé. La prise en charge thérapeutique associe plusieurs classes pharmacologiques dont les antalgiques, les anti-inflammatoires non stéroïdiens, les corticoïdes, les traitements de fond classiques de la polyarthrite rhumatoïde ( méthotrexate, anti-paludéens de synthÚse...) et depuis peu les biothérapies anti-TNFalpha. Ces derniers, étant des médicaments commercialisés récemment, font l'objet de nombreuses études pour évaluer leur efficacité, ainsi que d'un suivi rigoureux pour détecter toute survenue d'effets indésirablesAMIENS-BU Santé (800212102) / SudocSudocFranceF

    JERICO. Report after 1st General Assembly and JERICO Best Practices Workshop - Oct. 2012

    No full text
    The First JERICO General Assembly was organised in Heraklion on 1st & 2nd Oct. 2012. The coordinators took the opportunity of this important meeting, where most of partners were present, to organise other specific workshops and meetings plus individual WP meetings. Indeed, partners met in an informal way in short parallel WP meetings on Monday morning to prepare for the General Assembly discussions and to coordinate WP activities. In the afternoon of 1st Oct., a dedicated meeting officially gathered the TNA (Trans National Access) selection panel to debrief and conclude after the first TNA call and selection process. Up until the meeting date, 6 proposals have been given the green light and needed to be definitively validated to start. In addition, 3 proposals were still on post-evaluation and the panel had to conclude these post-evaluations. A minute of the TNA selection panel meeting, including final decisions, is provided in this report (see section 4). The General Assembly started on Monday afternoon and finished Tuesday evening. This is reported in section 5. Then a Steering committee meeting concluded the General Assembly and is reported in a dedicated document. Considering the need to anticipate the strategy for the future of coastal observatories, one of the main JERICO final objectives (deliverable D1.11), the coordinator decided to initiate discussions on the related topic by organising a dedicated workshop on Wednesday. Discussions and conclusions are reported in a dedicated report. To carry on WP3 and WP4 activities and to improve cross exchanges between both WPs, a workshop on Best Practices was organised on Thursday and Friday. Outcomes of the workshop are reported in section 6. A synthesis of discussions is reported in the document

    VulnĂ©rabilitĂ© au changement global : stratĂ©gies d’observation du milieu marin

    No full text
    International audienceOceanic monitoring is employed to understand and monitor the evolution of the ocean within a climate context heavily influenced by anthropogenic changes. From a logistical perspective, observation is carried out by means of core‐sampling operations, the deployment of benthic chambers allowing us to measure the rate of breathing and other flows, and vertical instrumentation of the sedimentary column. Satellites are vital tools for the observation of the marine environment and it is impossible to imagine, at least in superficial oceanic layers, systems that do not take into account the measurements contributed by satellites. The other way of studying the ocean is direct: at the surface and in the water column, in order to measure, observe, and obtain information, which is what an in situ observation is. In terms of deep‐ocean vehicles, the next step consists of implementing a so‐called hybrid ROV. This will offer new opportunities for in situ monitoring, satellite observations and digital modeling.L’ocĂ©an, espace mythique, parfois hostile, est restĂ© longtemps mĂ©connu et l’est encore aujourd’hui pour une bonne part (grands fonds, biodiversitĂ©). Si l’homme a pu rapidement se dĂ©placer Ă  sa surface, ce qui se passait en dessous restait souvent mystĂ©rieux. Bien que l’élaboration de cartes, incluant celles des courants marins, de sondes et bien Ă©videmment la pĂȘche datent de plusieurs siĂšcles, c’est dans les annĂ©es 1870 que l’exploration des ocĂ©ans est devenue un enjeu scientifique important, associĂ© Ă  des grandes expĂ©ditions ocĂ©anographiques menĂ©es afin d’explorer systĂ©matiquement les caractĂ©ristiques environnementales (physiques, chimiques, biologiques) des ocĂ©ans, ainsi que les caractĂ©ristiques des fonds marins (topographie, tempĂ©rature, sĂ©diments, courants). Pendant prĂšs d’un siĂšcle, le navire a Ă©tĂ© le seul vecteur permettant la mesure des paramĂštres de l’ocĂ©an. L’engouement pour la mesure de prĂ©cision est apparu dans la premiĂšre dĂ©cennie du XXe siĂšcle, mais ce n’est qu’à l’issue de la seconde guerre mondiale et sous l’impulsion tant des programmes d’observation mĂ©tĂ©orologiques que d’enjeux de dĂ©tection acoustique des sous-marins, que des programmes plus systĂ©matiques d’observation de qualitĂ© ont pu ĂȘtre lancĂ©s. Depuis la fin des annĂ©es 1960, grĂące Ă  l’électronique et sa miniaturisation, et Ă  la robotique, des engins autonomes ont pu ĂȘtre dĂ©veloppĂ©s (bouĂ©es, flotteurs, ROV, AUV en particulier), et ont pu partiellement se substituer Ă  des navires pour rĂ©aliser certaines missions de mesures en continu

    JERICO. Interim Periodic Activity Report. 2nd

    No full text
    The main objectives of the 2nd period were to finalise the “best practices handbooks” for glider (with GROOM), ferrybox and fixed platform. The project organises also workshops on JRA (Villefranche in October 2013) for presenting the mid-term results of WP10. JERICO also launched the second and third calls for Trans National Access. The mid-term review has been pass successfully in june 2013. The second general Assembly was held in Oslo on the 5th and 6th of May 2014. A dedicated JERICO website has been upgraded. All the submitted deliverables (except the consortium agreement) are available on this site: www.jerico-fp7.e

    JERICO Final General Assembly Report. 28th April 2015

    No full text
    JERICO Research Infrastructure (RI) is the coastal component of the European marine observing system, and is funded by the FP7 program and recently extended through a newly awarded H2020 project (JERICO-NEXT). It gathers 33 partners from 15 European countries. This research infrastructure aims at further developing, harmonizing and integrating nationally funded marine observing systems, collecting physical, chemical and biological parameters from different platforms (ferryboxes, fixed platforms, gliders, HF radars, benthic systems 
). The General Assembly was the first part of this “JERICO week”. In this report will be listed all relevant information (agenda, participant list, etc) and the slides of each presentation. The JERICO Management Team would like to thank again everyone who participated to this final General Assembly and to the JERICO week

    VulnĂ©rabilitĂ© au changement global : stratĂ©gies d’observation du milieu marin

    No full text
    International audienceOceanic monitoring is employed to understand and monitor the evolution of the ocean within a climate context heavily influenced by anthropogenic changes. From a logistical perspective, observation is carried out by means of core‐sampling operations, the deployment of benthic chambers allowing us to measure the rate of breathing and other flows, and vertical instrumentation of the sedimentary column. Satellites are vital tools for the observation of the marine environment and it is impossible to imagine, at least in superficial oceanic layers, systems that do not take into account the measurements contributed by satellites. The other way of studying the ocean is direct: at the surface and in the water column, in order to measure, observe, and obtain information, which is what an in situ observation is. In terms of deep‐ocean vehicles, the next step consists of implementing a so‐called hybrid ROV. This will offer new opportunities for in situ monitoring, satellite observations and digital modeling.L’ocĂ©an, espace mythique, parfois hostile, est restĂ© longtemps mĂ©connu et l’est encore aujourd’hui pour une bonne part (grands fonds, biodiversitĂ©). Si l’homme a pu rapidement se dĂ©placer Ă  sa surface, ce qui se passait en dessous restait souvent mystĂ©rieux. Bien que l’élaboration de cartes, incluant celles des courants marins, de sondes et bien Ă©videmment la pĂȘche datent de plusieurs siĂšcles, c’est dans les annĂ©es 1870 que l’exploration des ocĂ©ans est devenue un enjeu scientifique important, associĂ© Ă  des grandes expĂ©ditions ocĂ©anographiques menĂ©es afin d’explorer systĂ©matiquement les caractĂ©ristiques environnementales (physiques, chimiques, biologiques) des ocĂ©ans, ainsi que les caractĂ©ristiques des fonds marins (topographie, tempĂ©rature, sĂ©diments, courants). Pendant prĂšs d’un siĂšcle, le navire a Ă©tĂ© le seul vecteur permettant la mesure des paramĂštres de l’ocĂ©an. L’engouement pour la mesure de prĂ©cision est apparu dans la premiĂšre dĂ©cennie du XXe siĂšcle, mais ce n’est qu’à l’issue de la seconde guerre mondiale et sous l’impulsion tant des programmes d’observation mĂ©tĂ©orologiques que d’enjeux de dĂ©tection acoustique des sous-marins, que des programmes plus systĂ©matiques d’observation de qualitĂ© ont pu ĂȘtre lancĂ©s. Depuis la fin des annĂ©es 1960, grĂące Ă  l’électronique et sa miniaturisation, et Ă  la robotique, des engins autonomes ont pu ĂȘtre dĂ©veloppĂ©s (bouĂ©es, flotteurs, ROV, AUV en particulier), et ont pu partiellement se substituer Ă  des navires pour rĂ©aliser certaines missions de mesures en continu

    VulnĂ©rabilitĂ© au changement global : stratĂ©gies d’observation du milieu marin

    No full text
    International audienceOceanic monitoring is employed to understand and monitor the evolution of the ocean within a climate context heavily influenced by anthropogenic changes. From a logistical perspective, observation is carried out by means of core‐sampling operations, the deployment of benthic chambers allowing us to measure the rate of breathing and other flows, and vertical instrumentation of the sedimentary column. Satellites are vital tools for the observation of the marine environment and it is impossible to imagine, at least in superficial oceanic layers, systems that do not take into account the measurements contributed by satellites. The other way of studying the ocean is direct: at the surface and in the water column, in order to measure, observe, and obtain information, which is what an in situ observation is. In terms of deep‐ocean vehicles, the next step consists of implementing a so‐called hybrid ROV. This will offer new opportunities for in situ monitoring, satellite observations and digital modeling.L’ocĂ©an, espace mythique, parfois hostile, est restĂ© longtemps mĂ©connu et l’est encore aujourd’hui pour une bonne part (grands fonds, biodiversitĂ©). Si l’homme a pu rapidement se dĂ©placer Ă  sa surface, ce qui se passait en dessous restait souvent mystĂ©rieux. Bien que l’élaboration de cartes, incluant celles des courants marins, de sondes et bien Ă©videmment la pĂȘche datent de plusieurs siĂšcles, c’est dans les annĂ©es 1870 que l’exploration des ocĂ©ans est devenue un enjeu scientifique important, associĂ© Ă  des grandes expĂ©ditions ocĂ©anographiques menĂ©es afin d’explorer systĂ©matiquement les caractĂ©ristiques environnementales (physiques, chimiques, biologiques) des ocĂ©ans, ainsi que les caractĂ©ristiques des fonds marins (topographie, tempĂ©rature, sĂ©diments, courants). Pendant prĂšs d’un siĂšcle, le navire a Ă©tĂ© le seul vecteur permettant la mesure des paramĂštres de l’ocĂ©an. L’engouement pour la mesure de prĂ©cision est apparu dans la premiĂšre dĂ©cennie du XXe siĂšcle, mais ce n’est qu’à l’issue de la seconde guerre mondiale et sous l’impulsion tant des programmes d’observation mĂ©tĂ©orologiques que d’enjeux de dĂ©tection acoustique des sous-marins, que des programmes plus systĂ©matiques d’observation de qualitĂ© ont pu ĂȘtre lancĂ©s. Depuis la fin des annĂ©es 1960, grĂące Ă  l’électronique et sa miniaturisation, et Ă  la robotique, des engins autonomes ont pu ĂȘtre dĂ©veloppĂ©s (bouĂ©es, flotteurs, ROV, AUV en particulier), et ont pu partiellement se substituer Ă  des navires pour rĂ©aliser certaines missions de mesures en continu
    corecore