115 research outputs found

    Explaining racial and ethnic inequalities in postpartum allostatic load: Results from a multisite study of low to middle income woment

    Get PDF
    AbstractBackgroundRacial and ethnic inequalities in women's health are widely documented, but not for the postpartum period, and few studies examine whether neighborhood, psychosocial, and biological factors explain these gaps in women's health.MethodsUsing prospective longitudinal data collected from 1766 low to middle income women between 2008 and 2012 by the Community Child Health Network (CCHN), we tested the extent to which adjustment for neighborhood, economic, psychological, and medical conditions following a birth explained differences between African American, Latina, and White women in an indicator of physiological dysregulation allostatic load (AL), at one year postpartum as measured by 10 biomarkers: Body Mass Index, Waist Hip Ratio, systolic and diastolic blood pressure, high sensitivity C-reactive protein, Hemoglobin A1c, high-density lipoprotein and cholesterol ratio, and diurnal cortisol.ResultsMean postpartum AL scores were 4.65 for African American, 4.57 for Latina and 3.86 for White women. Unadjusted regression estimates for high AL for African American women (with White as the reference) were 0.80 (SD = 0.11) and 0.53 (SD = 0.15) for Latina women. Adjustment for household poverty, neighborhood, stress, and resilience variables resulted in a reduction of 36% of the excess risk in high AL for African Americans versus Whites and 42% of the excess risk for Latinas compared to Whites.ConclusionsRacial and ethnic inequalities in AL were accounted for largely by household poverty with additional contributions by psychological, economic, neighbourhood and medical variables. There remained a significant inequality between African American, and Latina women as compared to Whites even after adjustment for this set of variables. Future research into health inequalities among women should include a fuller consideration of the social determinants of health including employment, housing and prepregnancy medical conditions

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    ‘Costa da Morte’ ataxia is spinocerebellar ataxia 36: clinical and genetic characterization

    Get PDF
    Spinocerebellar ataxia 36 has been recently described in Japanese families as a new type of spinocerebellar ataxia with motor neuron signs. It is caused by a GGCCTG repeat expansion in intron 1 of NOP56. Family interview and document research allowed us to reconstruct two extensive, multigenerational kindreds stemming from the same village (Costa da Morte in Galicia, Spain), in the 17th century. We found the presence of the spinocerebellar ataxia 36 mutation co-segregating with disease in these families in whom we had previously identified an ∼0.8 Mb linkage region to chromosome 20 p. Subsequent screening revealed the NOP56 expansion in eight additional Galician ataxia kindreds. While normal alleles contain 5–14 hexanucleotide repeats, expanded alleles range from ∼650 to 2500 repeats, within a shared haplotype. Further expansion of repeat size was frequent, especially upon paternal transmission, while instances of allele contraction were observed in maternal transmissions. We found a total of 63 individuals carrying the mutation, 44 of whom were confirmed to be clinically affected; over 400 people are at risk. We describe here the detailed clinical picture, consisting of a late-onset, slowly progressive cerebellar syndrome with variable eye movement abnormalities and sensorineural hearing loss. There were signs of denervation in the tongue, as well as mild pyramidal signs, but otherwise no signs of classical amyotrophic lateral sclerosis. Magnetic resonance imaging findings were consistent with the clinical course, showing atrophy of the cerebellar vermis in initial stages, later evolving to a pattern of olivo-ponto-cerebellar atrophy. We estimated the origin of the founder mutation in Galicia to have occurred ∼1275 years ago. Out of 160 Galician families with spinocerebellar ataxia, 10 (6.3%) were found to have spinocerebellar ataxia 36, while 15 (9.4%) showed other of the routinely tested dominant spinocerebellar ataxia types. Spinocerebellar ataxia 36 is thus, so far, the most frequent dominant spinocerebellar ataxia in this region, which may have implications for American countries associated with traditional Spanish emigration

    Genome-Wide Association Meta-analysis of Neuropathologic Features of Alzheimer's Disease and Related Dementias

    Get PDF
    Alzheimer's disease (AD) and related dementias are a major public health challenge and present a therapeutic imperative for which we need additional insight into molecular pathogenesis. We performed a genome-wide association study and analysis of known genetic risk loci for AD dementia using neuropathologic data from 4,914 brain autopsies. Neuropathologic data were used to define clinico-pathologic AD dementia or controls, assess core neuropathologic features of AD (neuritic plaques, NPs; neurofibrillary tangles, NFTs), and evaluate commonly co-morbid neuropathologic changes: cerebral amyloid angiopathy (CAA), Lewy body disease (LBD), hippocampal sclerosis of the elderly (HS), and vascular brain injury (VBI). Genome-wide significance was observed for clinico-pathologic AD dementia, NPs, NFTs, CAA, and LBD with a number of variants in and around the apolipoprotein E gene (APOE). GalNAc transferase 7 (GALNT7), ATP-Binding Cassette, Sub-Family G (WHITE), Member 1 (ABCG1), and an intergenic region on chromosome 9 were associated with NP score; and Potassium Large Conductance Calcium-Activated Channel, Subfamily M, Beta Member 2 (KCNMB2) was strongly associated with HS. Twelve of the 21 non-APOE genetic risk loci for clinically-defined AD dementia were confirmed in our clinico-pathologic sample: CR1, BIN1, CLU, MS4A6A, PICALM, ABCA7, CD33, PTK2B, SORL1, MEF2C, ZCWPW1, and CASS4 with 9 of these 12 loci showing larger odds ratio in the clinico-pathologic sample. Correlation of effect sizes for risk of AD dementia with effect size for NFTs or NPs showed positive correlation, while those for risk of VBI showed a moderate negative correlation. The other co-morbid neuropathologic features showed only nominal association with the known AD loci. Our results discovered new genetic associations with specific neuropathologic features and aligned known genetic risk for AD dementia with specific neuropathologic changes in the largest brain autopsy study of AD and related dementias

    Genes implicated in multiple sclerosis pathogenesis from consilience of genotyping and expression profiles in relapse and remission

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Although the pathogenesis of MS remains unknown, it is widely regarded as an autoimmune disease mediated by T-lymphocytes directed against myelin proteins and/or other oligodendrocyte epitopes.</p> <p>Methods</p> <p>In this study we investigated the gene expression profiles of peripheral blood cells from patients with RRMS during the relapse and the remission phases utilizing gene microarray technology. Dysregulated genes encoded in regions associated with MS susceptibility from genomic screens or previous trancriptomic studies were identified. The proximal promoter region polymorphisms of two genes were tested for association with disease and expression level.</p> <p>Results</p> <p>Distinct sets of dysregulated genes during the relapse and remission phases were identified including genes involved in apoptosis and inflammation. Three of these dysregulated genes have been previously implicated with MS susceptibility in genomic screens: TGFβ1, CD58 and DBC1. TGFβ1 has one common SNP in the proximal promoter: -508 T>C (rs1800469). Genotyping two Australian trio sets (total 620 families) found a trend for over-transmission of the T allele in MS in females (p < 0.13). Upregulation of CD58 and DBC1 in remission is consistent with their putative roles in promoting regulatory T cells and reducing cell proliferation, respectively. A fourth gene, ALOX5, is consistently found over-expressed in MS. Two common genetic variants were confirmed in the ALOX5 putatve promoter: -557 T>C (rs12762303) and a 6 bp tandem repeat polymorphism (GGGCGG) between position -147 and -176; but no evidence for transmission distortion found.</p> <p>Conclusion</p> <p>The dysregulation of these genes tags their metabolic pathways for further investigation for potential therapeutic intervention.</p

    \u3cem\u3eABCC9\u3c/em\u3e Gene Polymorphism Is Associated with Hippocampal Sclerosis of Aging Pathology

    Get PDF
    Hippocampal sclerosis of aging (HS-Aging) is a high-morbidity brain disease in the elderly but risk factors are largely unknown. We report the first genome-wide association study (GWAS) with HS-Aging pathology as an endophenotype. In collaboration with the Alzheimer\u27s Disease Genetics Consortium, data were analyzed from large autopsy cohorts: (#1) National Alzheimer\u27s Coordinating Center (NACC); (#2) Rush University Religious Orders Study and Memory and Aging Project; (#3) Group Health Research Institute Adult Changes in Thought study; (#4) University of California at Irvine 90+ Study; and (#5) University of Kentucky Alzheimer\u27s Disease Center. Altogether, 363 HS-Aging cases and 2,303 controls, all pathologically confirmed, provided statistical power to test for risk alleles with large effect size. A two-tier study design included GWAS from cohorts #1-3 (Stage I) to identify promising SNP candidates, followed by focused evaluation of particular SNPs in cohorts #4-5 (Stage II). Polymorphism in the ATP-binding cassette, sub-family C member 9 (ABCC9) gene, also known as sulfonylurea receptor 2, was associated with HS-Aging pathology. In the meta-analyzed Stage I GWAS, ABCC9 polymorphisms yielded the lowest p values, and factoring in the Stage II results, the meta-analyzed risk SNP (rs704178:G) attained genome-wide statistical significance (p = 1.4 × 10-9), with odds ratio (OR) of 2.13 (recessive mode of inheritance). For SNPs previously linked to hippocampal sclerosis, meta-analyses of Stage I results show OR = 1.16 for rs5848 (GRN) and OR = 1.22 rs1990622 (TMEM106B), with the risk alleles as previously described. Sulfonylureas, a widely prescribed drug class used to treat diabetes, also modify human ABCC9 protein function. A subsample of patients from the NACC database (n = 624) were identified who were older than age 85 at death with known drug history. Controlling for important confounders such as diabetes itself, exposure to a sulfonylurea drug was associated with risk for HS-Aging pathology (p = 0.03). Thus, we describe a novel and targetable dementia risk factor

    Genome-Wide Gene-Environment Study Identifies Glutamate Receptor Gene GRIN2A as a Parkinson's Disease Modifier Gene via Interaction with Coffee

    Get PDF
    Our aim was to identify genes that influence the inverse association of coffee with the risk of developing Parkinson's disease (PD). We used genome-wide genotype data and lifetime caffeinated-coffee-consumption data on 1,458 persons with PD and 931 without PD from the NeuroGenetics Research Consortium (NGRC), and we performed a genome-wide association and interaction study (GWAIS), testing each SNP's main-effect plus its interaction with coffee, adjusting for sex, age, and two principal components. We then stratified subjects as heavy or light coffee-drinkers and performed genome-wide association study (GWAS) in each group. We replicated the most significant SNP. Finally, we imputed the NGRC dataset, increasing genomic coverage to examine the region of interest in detail. The primary analyses (GWAIS, GWAS, Replication) were performed using genotyped data. In GWAIS, the most significant signal came from rs4998386 and the neighboring SNPs in GRIN2A. GRIN2A encodes an NMDA-glutamate-receptor subunit and regulates excitatory neurotransmission in the brain. Achieving P2df = 10−6, GRIN2A surpassed all known PD susceptibility genes in significance in the GWAIS. In stratified GWAS, the GRIN2A signal was present in heavy coffee-drinkers (OR = 0.43; P = 6×10−7) but not in light coffee-drinkers. The a priori Replication hypothesis that “Among heavy coffee-drinkers, rs4998386_T carriers have lower PD risk than rs4998386_CC carriers” was confirmed: ORReplication = 0.59, PReplication = 10−3; ORPooled = 0.51, PPooled = 7×10−8. Compared to light coffee-drinkers with rs4998386_CC genotype, heavy coffee-drinkers with rs4998386_CC genotype had 18% lower risk (P = 3×10−3), whereas heavy coffee-drinkers with rs4998386_TC genotype had 59% lower risk (P = 6×10−13). Imputation revealed a block of SNPs that achieved P2df<5×10−8 in GWAIS, and OR = 0.41, P = 3×10−8 in heavy coffee-drinkers. This study is proof of concept that inclusion of environmental factors can help identify genes that are missed in GWAS. Both adenosine antagonists (caffeine-like) and glutamate antagonists (GRIN2A-related) are being tested in clinical trials for treatment of PD. GRIN2A may be a useful pharmacogenetic marker for subdividing individuals in clinical trials to determine which medications might work best for which patients
    corecore