4,009 research outputs found
Decoherence-free quantum information in the presence of dynamical evolution
We analyze decoherence-free (DF) quantum information in the presence of an
arbitrary non-nearest-neighbor bath-induced system Hamiltonian using a
Markovian master equation. We show that the most appropriate encoding for N
qubits is probably contained within the ~(2/9) N excitation subspace. We give a
timescale over which one would expect to apply other methods to correct for the
system Hamiltonian. In order to remain applicable to experiment, we then focus
on small systems, and present examples of DF quantum information for three and
four qubits. We give an encoding for four qubits that, while quantum
information remains in the two-excitation subspace, protects against an
arbitrary bath-induced system Hamiltonian. Although our results are general to
any system of qubits that satisfies our assumptions, throughout the paper we
use dipole-coupled qubits as an example physical system.Comment: 8 pages, 4 figure
A new microscopic nucleon-nucleon interaction derived from relativistic mean field theory
A new microscopic nucleon-nucleon (NN) interaction has been derived for the
first time from the popular relativistic mean field theory (RMFT) Lagrangian.
The NN interaction so obtained remarkably relate to the inbuilt fundamental
parameters of RMFT. Furthermore, by folding it with the RMFT-densities of
cluster and daughter nuclei to obtain the optical potential, it's application
is also examined to study the exotic cluster radioactive decays, and results
obtained found comparable with the successfully used M3Y phenomenological
effective NN interactions. The presently derived NN-interaction can also be
used to calculate a number of other nuclear observables.Comment: 4 Pages 2 Figure
New method for Calculating the Input Impedance of rectangular Patch Antenna
The cavity model has been modified to account for the impedance boundary condition at the edges of a rectangular microstrip antenna. Results have been compared with those from the old cavity model and experimental data
Applicability of shape parameterizations for giant dipole resonance in warm and rapidly rotating nuclei
We investigate how well the shape parameterizations are applicable for
studying the giant dipole resonance (GDR) in nuclei, in the low temperature
and/or high spin regime. The shape fluctuations due to thermal effects in the
GDR observables are calculated using the actual free energies evaluated at
fixed spin and temperature. The results obtained are compared with Landau
theory calculations done by parameterizing the free energy. We exemplify that
the Landau theory could be inadequate where shell effects are dominating. This
discrepancy at low temperatures and high spins are well reflected in GDR
observables and hence insists on exact calculations in such cases.Comment: 10 pages, 2 figure
Rotational Bands and Electromagnetic Transitions of some even-even Neodymium Nuclei in J-Projected Hartree-Fock Model
Rotational structures of even-even Nd nuclei are studied with the
self-consistent deformed Hartree-Fock (HF) and angular momentum (J) projection
model. Spectra of ground band, recently observed , and a few
more excited, positive and negative parity bands have been studied upto high
spin values. Apart from these detailed electromagnetic properties (like E2, M1
matrix elements) of all the bands have been obtained. There is substantial
agreement between our model calculations and available experimental data.
Predictions are made about the band structures and electromagnetic properties
of these nuclei. Some 4-qasiparticle K-isomeric bands and their electromagnetic
properties are predicted.Comment: 20 page
First simultaneous lidar observations of sodium layers and VHF radar observations of E-region field-aligned irregularities at the low-latitude station Gadanki
Simultaneous observations of atmospheric sodium (Na) made by a resonance lidar and E-region field-alignedirregularities (FAI) made by the Indian MST radar, both located at Gadanki (13.5°N, 79.2°E) and horizontal winds acquired by a SKiYMET meteor radar at Trivandrum (8.5°N, 77°E) are used to investigate the relationship among sodium layer, FAI and neutral winds in the mesosphere and lower thermosphere region. The altitudes and descent rates of higher altitude (~ 95 km) Na layer and FAI agree quite well. The descending structures of the higher altitude Na layer and FAI are found to be closely related to the diurnal tidal phase structure in zonal winds observed over Trivandrum. At lower altitudes, the descent rate of FAI is larger than that of Na layer and zonal tidal phase. These observations support the hypothesis that the metallic ion layers are formed by the zonal wind shear associated with tidal winds and subsequently get neutralized to manifest in the form of descending Na layers. The descending FAI echoing layers are manifestation of the instabilities setting in on the ionization layer. In the present observations, the altitudes of occurrence of Na layer and FAI echoes being low, we surmise that it is quite possible that the FAI echoes are due to the descent of already formed irregularities at higher altitudes
Giant dipole resonance with exact treatment of thermal fluctuations
The shape fluctuations due to thermal effects in the giant dipole resonance
(GDR) observables are calculated using the exact free energies evaluated at
fixed spin and temperature. The results obtained are compared with Landau
theory calculations done by parameterizing the free energy. The Landau theory
is found to be insufficient when the shell effects are dominating.Comment: 5 pages, 2 figure
Carbide precipitates in solution-quenched PH13-8 Mo stainless steel: a small-angle neutron scattering investigation
This paper deals with the small-angle neutron scattering (SANS) investigation on solution-quenched PH13-8 Mo stainless steel. From the nature of the variation of the functionality of the profiles for varying specimen thickness and also from the transmission electron microscopy (TEM), it has been established that the small-angle scattering signal predominantly originates from the block-like metallic carbide precipitates in the specimen. The contribution due to double Bragg reflection is not significant in the present case. The single scattering profile has been extracted from the experimental profiles corresponding to different values of specimen thickness. In order to avoid complexity and non-uniqueness of the multi-parameter minimization for randomly oriented polydisperse block-like precipitate model, the data have been analyzed assuming randomly oriented polydisperse cylindrical particle model with a locked aspect ratio
Seasonal variation of low-latitude E-region plasma irregularities studied using Gadanki radar and ionosonde
In this paper, we present seasonal variation of E region field-aligned irregularities (FAIs) observed using the Gadanki radar and compare them with the seasonal variation of Es observed from a nearby location SHAR. During daytime, FAIs occur maximum in summer and throughout the day, as compared to other seasons. During nighttime, FAIs occur equally in both summer and winter, and relatively less in equinoxes. Seasonal variations of Es (i.e. ftEs and fbEs) show that the daytime activity is maximum in summer and the nighttime activity is maximum in equinoxes. No relation is found between FAIs occurrence/SNR and ftEs/fbEs. FAIs occurrence, however, is found to be related well with (ftEs-fbEs ). This aspect is discussed in the light of the present understanding of the mid-latitude Es-FAIs relationship. The seasonal variations of FAIs observed at Gadanki are compared in detail with those of Piura, which show a significant difference in the daytime observations. The observed difference has been discussed considering the factors governing the generation of FAIs
- …