13 research outputs found

    A study of different contraceptive methods: need of the hour during COVID 19 pandemic

    Get PDF
    Background: COVID-19 disease is the pandemic caused by a single-stranded RNA virus that belongs to the coronavirus family known as 2019-nCoV (SARS-Co V). The disease is highly contagious and transmitted mainly by droplets or close contact. In this time of pandemic it is need of the hour to prevent more and more unwanted pregnancies. This study was to evaluate the contraceptive methods of choice which are easily available, cost effective and suitable to most of the patients during this terrible period of pandemic.Methods: This was a prospective observational study done from April 2020 to December 2020. Women coming to the OPD for contraceptive advice after medical termination of pregnancy and patients desiring postpartum contraception were included in the study. All data were collected from the OPD and IPD of our hospital. Different contraceptive methods available, their costs, hospital visits, complications, failure rate and reason for its discontinuation was analysed.Results: In this study 76.5% patients (n-459) accepted Inj. DMPA as compared to 10 % used Cu T and 13% used OC pills as a method of contraception. Inj DMPA is easily available, cost effective, has lesser side effects and need less hospital visits.Conclusions: DMPA should be made available as a first line method to all those who wishes to opt for reversible method of contraception. This study concludes, during the period of pandemic Inj DMPA was most preferred method of contraception

    3D SCANNING: A NEW APPROACH TOWARDS MODEL DEVELOPMENT IN ADVANCED MANUFACTURING SYSTEM

    Get PDF
    Abstract: Advanced manufacturing system is modern computing technology which has made a major impact on engineering design and manufacturing and has assisted in significantly reducing design and production costs, inventory levels and leads times as well as increasing productivity, quality, capitals equipment, utilization and so on. Based on this technology a vast array of equipment has been developed by various industries and research institutes. They have developed the different computer numerical machines which are using the part programming for the manufacturing of the complex shapes and for mass production. In this paper we are present features of computer numerical control machines, controller system of machine like simulator, 2D and 3D part programming, automated modeling of the metal sculpture, reverse engineering with the help of the 3D Scanning and finally fabrication on the vertical milling center. In this venture we developed the metal sculpture through 3D Scanning

    Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes

    Get PDF
    • Background and Aims Bread wheat (Triticum aestivum) has been through a severe genetic bottleneck as a result of its evolution and domestication. It is therefore essential that new sources of genetic variation are generated and utilized. This study aimed to generate genome-wide introgressed segments from Aegilops speltoides. Introgressions generated from this research will be made available for phenotypic analysis. • Methods Aegilops speltoides was crossed as the male parent to T. aestivum ‘Paragon’. The interspecific hybrids were then backcrossed to Paragon. Introgressions were detected and characterized using the Affymetrix Axiom Array and genomic in situ hybridization (GISH). • Key Results Recombination in the gametes of the F₁ hybrids was at a level where it was possible to generate a genetic linkage map of Ae. speltoides. This was used to identify 294 wheat/Ae. speltoides introgressions. Introgressions from all seven linkage groups of Ae. speltoides were found, including both large and small segments. Comparative analysis showed that overall macro-synteny is conserved between Ae. speltoides and T. aestivum, but that Ae. speltoides does not contain the 4A/5A/7B translocations present in wheat. Aegilops speltoides has been reported to carry gametocidal genes, i.e. genes that ensure their transmission through the gametes to the next generation. Transmission rates of the seven Ae. speltoides linkage groups introgressed into wheat varied. A 100 % transmission rate of linkage group 2 demonstrates the presence of the gametocidal genes on this chromosome. • Conclusions A high level of recombination occurs between the chromosomes of wheat and Ae. speltoides, leading to the generation of large numbers of introgressions with the potential for exploitation in breeding programmes. Due to the gametocidal genes, all germplasm developed will always contain a segment from Ae. speltoides linkage group 2S, in addition to an introgression from any other linkage group

    Molecular cytogenetics and genomics of novel wheat-Thinopyrum bessarabicum recombinant lines carrying intercalary translocations

    Full text link
    The diploid wild grass Thinopyrum bessarabicum (2n = 2x = 14, JJ or EbEb) is a rich source of important genes for bread wheat (2n = 6x = 42) improvement because of its salinity tolerance and disease resistance. Development of wheat–Th. bessarabicum translocation lines by backcrossing amphiploids in the absence of the Ph1 gene (allowing intergenomic recombination) enables its practical utilization in wheat improvement. Using genomic in situ hybridization (GISH) and repetitive probes for fluorescent in situ hybridization (FISH), six novel wheat–Th. bessarabicum translocation lines involving different chromosome segments (T4BS.4BL-4JL, T6BS.6BL-6JL, T5AS.5AL-5JL, T5DL.5DS-5JS, T2BS.2BL-2JL, and the whole arm translocation T1AL.1JS) were identified and characterized in this study. No background translocations between wheat genomes were observed. The involvement of 5 of the 7 chromosomes, and small terminal segments of the Th. bessarabicum chromosome arm were important, contributing to both reduced linkage drag of the derived lines by minimizing agronomically deleterious genes from the alien species, and high stability including transmission of the alien segment. All three wheat genomes were involved in the translocations with the alien chromosome, and GISH showed the Th. bessarabicum genome was more closely related to the D genome in wheat. All the introgression lines were disomic, stable and with good morphological characters. The work also generated a high-resolution karyotype of two accessions of Th. bessarabicum using multiple repetitive DNA probes for chromosome identification. A complete CS-Th. bessarabicum amphiploid (2n=8x=56, AABBDDJJ) was used and each individual Jgenome unambiguously identified. The established karyotype will be useful for the rapid identification of potential donor chromosomes in wheat improvement programs, allowing appropriate alien-chromosome transfer. Genotyping-by-sequencing (GBS) data was collected from the wheat-Th. bessarabicum introgression lines, but the complexity of the wheat genome and need for further development of data analysis pathways limited interpretation

    Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance

    Get PDF
    Pyramiding of alien-derived Wheat streak mosaic virus (WSMV) resistance and resistance enhancing genes in wheat is a cost-effective and environmentally safe strategy for disease control. PCR-based markers and cytogenetic analysis with genomic in situ hybridisation were applied to identify alien chromatin in four genetically diverse populations of wheat (Triticum aestivum) lines incorporating chromosome segments from Thinopyrum intermedium and Secale cereale (rye). Out of 20 experimental lines, 10 carried Th. intermedium chromatin as T4DL*4Ai#2S translocations, while, unexpectedly, 7 lines were positive for alien chromatin (Th. intermedium or rye) on chromosome 1B. The newly described rye 1RS chromatin, transmitted from early in the pedigree, was associated with enhanced WSMV resistance. Under field conditions, the 1RS chromatin alone showed some resistance, while together with the Th. intermedium 4Ai#2S offered superior resistance to that demonstrated by the known resistant cultivar Mace. Most alien wheat lines carry whole chromosome arms, and it is notable that these lines showed intra-arm recombination within the 1BS arm. The translocation breakpoints between 1BS and alien chromatin fell in three categories: (i) at or near to the centromere, (ii) intercalary between markers UL-Thin5 and Xgwm1130 and (iii) towards the telomere between Xgwm0911 and Xbarc194. Labelled genomic Th. intermedium DNA hybridised to the rye 1RS chromatin under high stringency conditions, indicating the presence of shared tandem repeats among the cereals. The novel small alien fragments may explain the difficulty in developing well-adapted lines carrying Wsm1 despite improved tolerance to the virus. The results will facilitate directed chromosome engineering producing agronomically desirable WSMV-resistant germplasm
    corecore