270 research outputs found
Molecular characterization of the Indian Andigena potato core collection using microsatellite markers
Twenty-four (24) microsatellite (SSR) markers of a new PGI kit were used to validate the genetic diversity of the 77 Indian Andigena potato core collections. In SSR analysis, polymorphic information content (PIC), allelic richness per locus of microsatellite loci and cluster analysis showed the high diversity of core collection. In total, 214 SSR alleles were detected in the core collection, out of which 208 alleles were polymorphic with absolute frequencies between 2 to 58. The PIC values of SSR loci ranged from 0.61 to 0.90. SSR-based dendrogram revealed eight main groups (Clusters I to VIII) including 26 single accessions at Dice similarity coefficient value of 0.37. None of the accession showed full similarity with any other accession, except that the maximum similarity (0.83) was observed between the accessions JEX/A-316 and JEX/A-317. PCA revealed 47.31% variation in the first three components. Analysis of molecular variance (AMOVA) analysis which resulted into maximum variation was due to within country origins and yield types. The genetic diversity of the core collection based on the microsatellite data appeared to have quite distinct genotypes that were formed by the morph-agronomic traits. These findings not only demonstrate the diverse core collection but are also useful for selecting genetically distinct potato materials to widen the genetic background of the potato gene pool.Keywords: Core collection, genetic diversity, potato, Solanum tuberosum subsp. andigena, SSRAfrican Journal of Biotechnology Vol. 12(10), pp. 1025-1033, 6 March, 201
Synthesize and characterization of artificial human bone developed by using nanocomposite
The combination of biopolymers with bioceramics plays vital role in development of artificial bone. Hydroxyapatite is extensively used as a material in prosthetic bone repair and replacement. In this paper synthesis of Hydroxyapatite- Polymethyl methacrylate – Zirconia (Hap-PMMA-ZrO2) composite by using powder metallurgy technique. The mechanical, morphological, In-vitro biocompatibility and tribological properties were characterized by universal testing machine, micro-vickers hardness tester, high resolution transmission electron microscope (HR-TEM), MTT assay and pin-on-disc setup. In-vitro cytotoxicity test on HeLa cell lines shows cell viability constant when doses concentration increases so material found non-toxic. Results show that micro Vickers hardness i.e. 520 approximately matches with natural human bone i.e. 400. Compressive strength is less as compared to human bone because of powder metallurgy route used for fabrication and is 74 MPa. Density of proposed composite artificial human bone i.e. 1.52 g/cc is less as compared to natural bone i.e. 2.90 g/cc. The Hap-PMMA-ZrO2 composite will be good biomaterials for bone repair and replacement wor
Cortical Decoding of Individual Finger Group Motions Using ReFIT Kalman Filter
Objective: To date, many brain-machine interface (BMI) studies have developed decoding algorithms for neuroprostheses that provide users with precise control of upper arm reaches with some limited grasping capabilities. However, comparatively few have focused on quantifying the performance of precise finger control. Here we expand upon this work by investigating online control of individual finger groups.Approach: We have developed a novel training manipulandum for non-human primate (NHP) studies to isolate the movements of two specific finger groups: index and middle-ring-pinkie (MRP) fingers. We use this device in combination with the ReFIT (Recalibrated Feedback Intention-Trained) Kalman filter to decode the position of each finger group during a single degree of freedom task in two rhesus macaques with Utah arrays in motor cortex. The ReFIT Kalman filter uses a two-stage training approach that improves online control of upper arm tasks with substantial reductions in orbiting time, thus making it a logical first choice for precise finger control.Results: Both animals were able to reliably acquire fingertip targets with both index and MRP fingers, which they did in blocks of finger group specific trials. Decoding from motor signals online, the ReFIT Kalman filter reliably outperformed the standard Kalman filter, measured by bit rate, across all tested finger groups and movements by 31.0 and 35.2%. These decoders were robust when the manipulandum was removed during online control. While index finger movements and middle-ring-pinkie finger movements could be differentiated from each other with 81.7% accuracy across both subjects, the linear Kalman filter was not sufficient for decoding both finger groups together due to significant unwanted movement in the stationary finger, potentially due to co-contraction.Significance: To our knowledge, this is the first systematic and biomimetic separation of digits for continuous online decoding in a NHP as well as the first demonstration of the ReFIT Kalman filter improving the performance of precise finger decoding. These results suggest that novel nonlinear approaches, apparently not necessary for center out reaches or gross hand motions, may be necessary to achieve independent and precise control of individual fingers
A randomised, controlled crossover comparison of the C-MAC videolaryngoscope with direct laryngoscopy in 150 patients during routine induction of anaesthesia
<p>Abstract</p> <p>Background</p> <p>The C-MAC<sup>® </sup>(Karl Storz, Tuttlingen, Germany) has recently been introduced as a new device for videolaryngoscopy guided intubation. The purpose of the present study was to compare for the first time the C-MAC with conventional direct laryngoscopy in 150 patients during routine induction of anaesthesia.</p> <p>Methods</p> <p>After approval of the institutional review board and written informed consent, 150 patients (ASA I-III) with general anaesthesia were enrolled. Computer-based open crossover randomisation was used to determine the sequence of the three laryngoscopies: Conventional direct laryngoscopy (HEINE Macintosh classic, Herrsching, Germany; blade sizes 3 or 4; <it>DL </it>group), C-MAC size 3 (<it>C-MAC3 </it>group) and C-MAC size 4 (<it>C-MAC4 </it>group) videolaryngoscopy, respectively. After 50 patients, laryngoscopy technique in the C-MAC4 group was changed to the straight blade technique described by Miller (C-MAC4/SBT).</p> <p>Results</p> <p>Including all 150 patients (70 male, aged (median [range]) 53 [20-82] years, 80 [48-179] kg), there was no difference of glottic view between DL, C-MAC3, C-MAC4, and C-MAC4/SBT groups; however, worst glottic view (C/L 4) was only seen with DL, but not with C-MAC videolaryngoscopy. In the subgroup of patients that had suboptimal glottic view with DL (C/L≥2a; n = 24), glottic view was improved in the C-MAC4/SBT group; C/L class improved by three classes in 5 patients, by two classes in 2 patients, by one class in 8 patients, remained unchanged in 8 patients, or decreased by two classes in 1 patient. The median (range) time taken for tracheal intubation in the DL, C-MAC3, C-MAC4 and C-MAC4/SBT groups was 8 sec (2-91 sec; n = 44), 10 sec (2-60 sec; n = 37), 8 sec (5-80 sec; n = 18) and 12 sec (2-70 sec; n = 51), respectively.</p> <p>Conclusions</p> <p>Combining the benefits of conventional direct laryngoscopy and videolaryngoscopy in one device, the C-MAC may serve as a standard intubation device for both routine airway management and educational purposes. However, in patients with suboptimal glottic view (C/L≥2a), the C-MAC size 4 with straight blade technique may reduce the number of C/L 3 or C/L 4 views, and therefore facilitate intubation. Further studies on patients with difficult airway should be performed to confirm these findings.</p
MoNuSAC2020:A Multi-Organ Nuclei Segmentation and Classification Challenge
Detecting various types of cells in and around the tumor matrix holds a special significance in characterizing the tumor micro-environment for cancer prognostication and research. Automating the tasks of detecting, segmenting, and classifying nuclei can free up the pathologists' time for higher value tasks and reduce errors due to fatigue and subjectivity. To encourage the computer vision research community to develop and test algorithms for these tasks, we prepared a large and diverse dataset of nucleus boundary annotations and class labels. The dataset has over 46,000 nuclei from 37 hospitals, 71 patients, four organs, and four nucleus types. We also organized a challenge around this dataset as a satellite event at the International Symposium on Biomedical Imaging (ISBI) in April 2020. The challenge saw a wide participation from across the world, and the top methods were able to match inter-human concordance for the challenge metric. In this paper, we summarize the dataset and the key findings of the challenge, including the commonalities and differences between the methods developed by various participants. We have released the MoNuSAC2020 dataset to the public
Identification of Functional Differences in Metabolic Networks Using Comparative Genomics and Constraint-Based Models
Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different functional predictions. Because CONGA provides a general framework, it can be applied to find functional differences across models and biological systems beyond those presented here
Six-membered ring systems: with O and/or S atoms
A large variety of publications have emerged in 2012 involving O- and S-6-
membered ring systems. The increasing number of reviews and other communica-
tions dedicated to natural and synthetic derivatives and their biological significance
highlights the importance of these heterocycles.
Reviews on natural products involve biosynthesis and isolation of enantiomeric
derivatives h12AGE4802i, biosynthesis, isolation, synthesis, and biological studies
on the pederin family h12NPR980i and xanthones obtained from fungi, lichens,
and bacteria h12CR3717i and on the potential chemotherapeutic value of phyto-
chemical products and plant extracts as antidiabetic h12NPR580i, antimicrobial,
and resistance-modifying agents h12NPR1007i. A more specific review covers a
structure–activity relationship of endoperoxides from marine origin and their antitry-
panosomal activity h12OBC7197i.
New synthetic routes to naturally occurring, biologically active pyran derivatives
have been the object of several papers. Different approaches have been discussed for
the total synthesis of tetrahydropyran-containing natural products (")-zampanolide
h12CEJ16868, 12EJO4130, 12OL3408i, (")-aspergillides A and B h12H(85)587,
12H(85)1255, 12TA252i, (þ)-neopeltolide h12JOC2225, 12JOC9840, 12H(85)
1255i, or their macrolactone core h12OBC3689, 12OL2346i. The total synthesis
of bistramide A h12CEJ7452i and (þ)-kalihinol A h12CC901i and the stereoselec-
tive synthesis of a fragment of bryostatin h12S3077, 12TL6163i have also been sur-
veyed. Other papers relate the total synthesis of naturally occurring carbocyclic and
heterocyclic-fused pyran compounds, such as (")-dysiherbaine h12CC6295i, penos-
tatin B h12OL244i, Greek tobacco lactonic products, and analogues h12TL4293i
and on the structurally intriguing limonoids andhraxylocarpins A–E h12CEJ14342i.
The stereocontrolled synthesis of fused tetrahydropyrans was used in the preparation
of blepharocalyxin D h12AGE3901i.
Polyphenolic heterocyclic compounds have also received great attention in 2012.
The biological activities and the chemistry of prenylated caged xanthones
h12PCB78i, the occurrence of sesquiterpene coumarins h12PR77i, and the medicinal properties of the xanthone mangiferin h12MRME412i have been reviewed.
An overview on the asymmetric syntheses of flavanones and chromanones
h12EJO449i, on the synthesis and reactivity of flavones h12T8523i and xanthones
h12COC2818i, on the synthesis and biosynthesis of biocoumarins h12T2553i, and on
the synthesis and applications of flavylium compounds h12CSR869i has been discussed.
The most recent developments in the synthesis and applications of sultones, a
very important class of sulfur compounds, were reported h12CR5339i.
A review on xanthene-based fluorescent probes for sensing cations, anions, bio-
logical species, and enzyme activity has described the spiro-ring-opening approach
with a focus on the major mechanisms controlling their luminescence behavior
h12CR1910i. The design and synthesis of other derivatives to be used as sensors of
gold species h12CC11229i and other specific metal cations h12PC823i have also
been described. Recent advances related to coumarin-derived fluorescent chemosen-
sors for metal ions h12COC2690i and to monitoring in vitro analysis and cellular
imaging of monoamine oxidase activity h12CC6833i have been discussed.
The study of various organic chromophores allowed the synthesis of novel dica-
tionic phloroglucinol-type bisflavylium pigments h12SL2053i, and the optical and
spectroscopic properties of several synthetic 6-aryldibenzo[b,d]pyrylium salts were
explored h12TL6433i.
Discussion of specific reactions leading to O- and S-membered heterocyclic
compounds covers intramolecular radical cyclization h12S2475i and asymmetric
enamine and dienamine catalysis h12EJO865i, oxa-Michael h12CSR988i and dom-
ino Knoevenagel–hetero-Diels–Alder (hDA) reactions h12T5693i, and the versatility
in cycloadditions as well as nucleophilic reactions using o-quinones h12CSR1050i.
The use of specific reagents relevant to this chapter includes molecular iodine
h12CEJ5460, 12COS561i, samarium diiodide–water for selective reductive transfor-
mations h12CC330i, o-quinone methides as versatile intermediates h12CEJ9160i,
InCl3 as catalyst h12T8683i, and gold and platinum p-acid mediated insertion of
alkynes into carbon–heteroatom s-bonds h12S3401i.
The remainder of this chapter discusses the most studied transformations on
O- and S-6-membered heterocycles
How Can We Improve Oncofertility Care for Patients? A Systematic Scoping Review of Current International Practice and Models of Care
© The Author(s) 2018. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. BACKGROUND: Fertility preservation (FP) is an important quality of life issue for cancer survivors of reproductive age. Despite the existence of broad international guidelines, the delivery of oncofertility care, particularly amongst paediatric, adolescent and young adult patients, remains a challenge for healthcare professionals (HCPs). The quality of oncofertility care is variable and the uptake and utilization of FP remains low. Available guidelines fall short in providing adequate detail on how oncofertility models of care (MOC) allow for the real-world application of guidelines by HCPs. OBJECTIVE AND RATIONALE: The aim of this study was to systematically review the literature on the components of oncofertility care as defined by patient and clinician representatives, and identify the barriers, facilitators and challenges, so as to improve the implementation of oncofertility services. SEARCH METHODS: A systematic scoping review was conducted on oncofertility MOC literature published in English between 2007 and 2016, relating to 10 domains of care identified through consumer research: communication, oncofertility decision aids, age-appropriate care, referral pathways, documentation, training, supportive care during treatment, reproductive care after cancer treatment, psychosocial support and ethical practice of oncofertility care. A wide range of electronic databases (CINAHL, Embase, PsycINFO, PubMed, AEIPT, Education Research Complete, ProQuest and VOCED) were searched in order to synthesize the evidence around delivery of oncofertility care. Related citations and reference lists were searched. The review was undertaken following registration (International prospective register of systematic reviews (PROSPERO) registration number CRD42017055837) and guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). OUTCOMES: A total of 846 potentially relevant studies were identified after the removal of duplicates. All titles and abstracts were screened by a single reviewer and the final 147 papers were screened by two reviewers. Ten papers on established MOC were identified amongst the included papers. Data were extracted from each paper and quality scores were then summarized in the oncofertility MOC summary matrix. The results identified a number of themes for improving MOC in each domain, which included: the importance of patients receiving communication that is of a higher quality and in different formats on their fertility risk and FP options; improving provision of oncofertility care in a timely manner; improving access to age-appropriate care; defining the role and scope of practice of all HCPs; and improving communication between different HCPs. Different forms of decision aids were found useful for assisting patients to understand FP options and weigh up choices. WIDER IMPLICATIONS: This analysis identifies core components for delivery of oncofertility MOC. The provision of oncofertility services requires planning to ensure services have safe and reliable referral pathways and that they are age-appropriate and include medical and psychological oncofertility care into the survivorship period. In order for this to happen, collaboration needs to occur between clinicians, allied HCPs and executives within paediatric and adult hospitals, as well as fertility clinics across both public and private services. Training of both cancer and non-cancer HCPs is needed to improve the knowledge of HCPs, the quality of care provided and the confidence of HCPs with these consultations
Mapping child growth failure across low- and middle-income countries
Childhood malnutrition is associated with high morbidity and mortality globally1. Undernourished children are more likely to experience cognitive, physical, and metabolic developmental impairments that can lead to later cardiovascular disease, reduced intellectual ability and school attainment, and reduced economic productivity in adulthood2. Child growth failure (CGF), expressed as stunting, wasting, and underweight in children under five years of age (0�59 months), is a specific subset of undernutrition characterized by insufficient height or weight against age-specific growth reference standards3�5. The prevalence of stunting, wasting, or underweight in children under five is the proportion of children with a height-for-age, weight-for-height, or weight-for-age z-score, respectively, that is more than two standard deviations below the World Health Organization�s median growth reference standards for a healthy population6. Subnational estimates of CGF report substantial heterogeneity within countries, but are available primarily at the first administrative level (for example, states or provinces)7; the uneven geographical distribution of CGF has motivated further calls for assessments that can match the local scale of many public health programmes8. Building from our previous work mapping CGF in Africa9, here we provide the first, to our knowledge, mapped high-spatial-resolution estimates of CGF indicators from 2000 to 2017 across 105 low- and middle-income countries (LMICs), where 99 of affected children live1, aggregated to policy-relevant first and second (for example, districts or counties) administrative-level units and national levels. Despite remarkable declines over the study period, many LMICs remain far from the ambitious World Health Organization Global Nutrition Targets to reduce stunting by 40 and wasting to less than 5 by 2025. Large disparities in prevalence and progress exist across and within countries; our maps identify high-prevalence areas even within nations otherwise succeeding in reducing overall CGF prevalence. By highlighting where the highest-need populations reside, these geospatial estimates can support policy-makers in planning interventions that are adapted locally and in efficiently directing resources towards reducing CGF and its health implications. © 2020, The Author(s)
- …