238 research outputs found
Dust Devil Tracks
Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns
Spray washes of organic acids to decontaminate pork carcass tissues in India
Medical and commercial requirements to extend safe, high quality shelf life of food, have focussed attention on decontamination systems. Organic acid sprays of acetic, propionic and lactic at 3Kg/cm\u27 pressure and 1%, 2% and 3% concentrations, individually and in combination, were used to decontaminate pork samples. It was observed that out of 3 acids lactic acid at 2% was found to reduce the total viable count (TVC) by 0.07 log units whereas the combination treatment of 3% acetic and propionic acids resulted in 0.09 log unit reduction of TVC without affecting the color and odour score. The shelf life, on analysis, was sound to almost double at refrigeration storage as compared to control. Thus, 2 % lactic acid and 3% acetic + propionic acids offer scope for reduction in microflora and suppression of pathogen proliferation on pork samples during refrigeration storage and transport, thereby improving meat quality and shelf life
Non-cell autonomous OTX2 transcription factor regulates anxiety-related behaviors in the mouse
The Otx2 homeoprotein transcription factor is expressed in the dopaminergic neurons of the ventral tegmental area, a mesencephalic nucleus involved in the control of complex behaviors through its projections to limbic structures, including the ventral hippocampus, amygdala, nucleus accumbens and prefrontal cortex. We find adult mice heterozygous for Otx2 show a hypoanxious phenotype in light-dark box and elevated plus maze paradigms. However, the number of dopaminergic neurons, the integrity of their axons, their projection patterns in target structures, and the amounts of dopamine and dopamine metabolites in targets structures were not modified in the Otx2 mutant. Because OTX2 is expressed by the choroid plexus, secreted into cerebrospinal fluid and transferred to parvalbumin interneurons of the cortex, hippocampus, and amygdala, we investigated if the hypoanxiety of Otx2 heterozygous mice could result from the decreased synthesis of Otx2 in the choroid plexus. Indeed, hypoanxious phenotype was reversed by the overexpression of Otx2 specifically in choroid plexus of adult Otx2 heterozygous mice, while hypoanxious phenotype could be induced in adult wild type mice by lowering OTX2 levels in the cerebrospinal fluid. Taken together, OTX2 synthesis by the choroid plexus followed by its secretion into the cerebrospinal fluid is an important regulator of the anxiety phenotype in the mouse. All rights reserved. No reuse allowed without permission
Clinical Utility of Random Anti–Tumor Necrosis Factor Drug–Level Testing and Measurement of Antidrug Antibodies on the Long-Term Treatment Response in Rheumatoid Arthritis
Objective: To investigate whether antidrug antibodies and/or drug non-trough levels predict the long-term treatment response in a large cohort of patients with rheumatoid arthritis (RA) treated with adalimumab or etanercept and to identify factors influencing antidrug antibody and drug levels to optimize future treatment decisions. Methods: A total of 331 patients from an observational prospective cohort were selected (160 patients treated with adalimumab and 171 treated with etanercept). Antidrug antibody levels were measured by radioimmunoassay, and drug levels were measured by enzyme-linked immunosorbent assay in 835 serial serum samples obtained 3, 6, and 12 months after initiation of therapy. The association between antidrug antibodies and drug non-trough levels and the treatment response (change in the Disease Activity Score in 28 joints) was evaluated. Results: Among patients who completed 12 months of followup, antidrug antibodies were detected in 24.8% of those receiving adalimumab (31 of 125) and in none of those receiving etanercept. At 3 months, antidrug antibody formation and low adalimumab levels were significant predictors of no response according to the European League Against Rheumatism (EULAR) criteria at 12 months (area under the receiver operating characteristic curve 0.71 [95% confidence interval (95% CI) 0.57, 0.85]). Antidrug antibody–positive patients received lower median dosages of methotrexate compared with antidrug antibody–negative patients (15 mg/week versus 20 mg/week; P = 0.01) and had a longer disease duration (14.0 versus 7.7 years; P = 0.03). The adalimumab level was the best predictor of change in the DAS28 at 12 months, after adjustment for confounders (regression coefficient 0.060 [95% CI 0.015, 0.10], P = 0.009). Etanercept levels were associated with the EULAR response at 12 months (regression coefficient 0.088 [95% CI 0.019, 0.16], P = 0.012); however, this difference was not significant after adjustment. A body mass index of ≥30 kg/m2 and poor adherence were associated with lower drug levels. Conclusion: Pharmacologic testing in anti–tumor necrosis factor–treated patients is clinically useful even in the absence of trough levels. At 3 months, antidrug antibodies and low adalimumab levels are significant predictors of no response according to the EULAR criteria at 12 months
Coordinate Regulation of Lipid Metabolism by Novel Nuclear Receptor Partnerships
Mammalian nuclear receptors broadly influence metabolic fitness and serve as popular targets for developing drugs to treat cardiovascular disease, obesity, and diabetes. However, the molecular mechanisms and regulatory pathways that govern lipid metabolism remain poorly understood. We previously found that the Caenorhabditis elegans nuclear hormone receptor NHR-49 regulates multiple genes in the fatty acid beta-oxidation and desaturation pathways. Here, we identify additional NHR-49 targets that include sphingolipid processing and lipid remodeling genes. We show that NHR-49 regulates distinct subsets of its target genes by partnering with at least two other distinct nuclear receptors. Gene expression profiles suggest that NHR-49 partners with NHR-66 to regulate sphingolipid and lipid remodeling genes and with NHR-80 to regulate genes involved in fatty acid desaturation. In addition, although we did not detect a direct physical interaction between NHR-49 and NHR-13, we demonstrate that NHR-13 also regulates genes involved in the desaturase pathway. Consistent with this, gene knockouts of these receptors display a host of phenotypes that reflect their gene expression profile. Our data suggest that NHR-80 and NHR-13's modulation of NHR-49 regulated fatty acid desaturase genes contribute to the shortened lifespan phenotype of nhr-49 deletion mutant animals. In addition, we observed that nhr-49 animals had significantly altered mitochondrial morphology and function, and that distinct aspects of this phenotype can be ascribed to defects in NHR-66– and NHR-80–mediated activities. Identification of NHR-49's binding partners facilitates a fine-scale dissection of its myriad regulatory roles in C. elegans. Our findings also provide further insights into the functions of the mammalian lipid-sensing nuclear receptors HNF4α and PPARα
A Mathematical Methodology for Determining the Temporal Order of Pathway Alterations Arising during Gliomagenesis
Human cancer is caused by the accumulation of genetic alterations in cells. Of special importance are changes that occur early during malignant transformation because they may result in oncogene addiction and thus represent promising targets for therapeutic intervention. We have previously described a computational approach, called Retracing the Evolutionary Steps in Cancer (RESIC), to determine the temporal sequence of genetic alterations during tumorigenesis from cross-sectional genomic data of tumors at their fully transformed stage. Since alterations within a set of genes belonging to a particular signaling pathway may have similar or equivalent effects, we applied a pathway-based systems biology approach to the RESIC methodology. This method was used to determine whether alterations of specific pathways develop early or late during malignant transformation. When applied to primary glioblastoma (GBM) copy number data from The Cancer Genome Atlas (TCGA) project, RESIC identified a temporal order of pathway alterations consistent with the order of events in secondary GBMs. We then further subdivided the samples into the four main GBM subtypes and determined the relative contributions of each subtype to the overall results: we found that the overall ordering applied for the proneural subtype but differed for mesenchymal samples. The temporal sequence of events could not be identified for neural and classical subtypes, possibly due to a limited number of samples. Moreover, for samples of the proneural subtype, we detected two distinct temporal sequences of events: (i) RAS pathway activation was followed by TP53 inactivation and finally PI3K2 activation, and (ii) RAS activation preceded only AKT activation. This extension of the RESIC methodology provides an evolutionary mathematical approach to identify the temporal sequence of pathway changes driving tumorigenesis and may be useful in guiding the understanding of signaling rearrangements in cancer development
NHR-49 Helps Germline-Less Worms Chew the Fat
In C. elegans, removal of the germline extends lifespan significantly. We demonstrate that the nuclear hormone receptor, NHR-49, enables the response to this physiological change by increasing the expression of genes involved in mitochondrial β-oxidation and fatty-acid desaturation. The coordinated augmentation of these processes is critical for germline-less animals to maintain their lipid stores and to sustain de novo fat synthesis during adulthood. Following germline ablation, NHR-49 is up-regulated in somatic cells by the conserved longevity determinants DAF-16/FOXO and TCER-1/TCERG1. Accordingly, NHR-49 overexpression in fertile animals extends their lifespan modestly. In fertile adults, nhr-49 expression is DAF-16/FOXO and TCER-1/TCERG1 independent although its depletion causes age-related lipid abnormalities. Our data provide molecular insights into how reproductive stimuli are integrated into global metabolic changes to alter the lifespan of the animal. They suggest that NHR-49 may facilitate the adaptation to loss of reproductive potential through synchronized enhancement of fatty-acid oxidation and desaturation, thus breaking down some fats ordained for reproduction and orchestrating a lipid profile conducive for somatic maintenance and longevity
Calibration of the CMS hadron calorimeters using proton-proton collision data at √s = 13 TeV
Methods are presented for calibrating the hadron calorimeter system of the CMS detector at the LHC. The hadron calorimeters of the CMS experiment are sampling calorimeters of brass and scintillator, and are in the form of one central detector and two endcaps. These calorimeters cover pseudorapidities |η| < 3 and are positioned inside the solenoidal magnet. An outer calorimeter, outside the magnet coil, covers |η| < 1.26, and a steel and quartz-fiber Cherenkov forward calorimeter extends the coverage to |η| < 5.19. The initial calibration of the calorimeters was based on results from test beams, augmented with the use of radioactive sources and lasers. The calibration was improved substantially using proton-proton collision data collected at √s = 7, 8, and 13 TeV, as well as cosmic ray muon data collected during the periods when the LHC beams were not present. The present calibration is performed using the 13 TeV data collected during 2016 corresponding to an integrated luminosity of 35.9 fb⁻¹. The intercalibration of channels exploits the approximate uniformity of energy collection over the azimuthal angle. The absolute energy scale of the central and endcap calorimeters is set using isolated charged hadrons. The energy scale for the electromagnetic portion of the forward calorimeters is set using Z→ ee data. The energy scale of the outer calorimeters has been determined with test beam data and is confirmed through data with high transverse momentum jets. In this paper, we present the details of the calibration methods and accuracy
Author Correction: Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk
Correction to: Nature Geneticshttps://doi.org/10.1038/s41588-023-01314-0, published online 13 March 2023. In the version of the article initially published, the sample sizes in the main text and Supplementary Tables 1 and 2 were incorrect. In the abstract, the last paragraph of the Introduction, the first paragraph of the Results, the top box in Figure 1a and the Supplementary Information, the total sample size has been corrected from 580,869 to 588,452 participants and the size of the European cohort from 468,062 to 475,645. Some of the effect sizes in Supplementary Table 14 (columns W, Z, AC, AF) had the wrong sign. There was also an error in Supplementary Table 3 where the sample size instead of the variant count was shown for EXCEED. The errors do not affect the conclusions of the study. Additionally, two acknowledgments for use of INTERVAL pQTL and Lung eQTL consortium data were omitted from the Supplementary Information. These errors have been corrected in the Supplementary Information and HTML and PDF versions of the article
- …
