7 research outputs found

    Conventional and CT angiography in children: dosimetry and dose comparisons

    Get PDF
    Tremendous advances have been made in imaging in children with both congenital and acquired heart disease. These include technical advances in cardiac catheterization and conventional angiography, especially with advancements in interventional procedures, as well as noninvasive imaging with MR and CT angiography. With rapid advances in multidetector CT (MDCT) technology, most recently 64-detector array systems (64-slice MDCT), have come a number of advantages over MR. However, both conventional and CT angiography impart radiation dose to children. Although the presence of radiation exposure to children has long been recognized, it is apparent that our ability to assess this dose, particularly in light of the rapid advancements, has been limited. Traditional methods of dosimetry for both conventional and CT angiography are somewhat cumbersome or involve a potential for substantial uncertainty. Recent developments in dosimetry, including metal oxide semiconductor field effect transistors (MOSFET) and the availability of anthropomorphic, tissue-equivalent phantoms have provided new opportunities for dosimetric assessments. Recent work with this technology in state-of-the-art cardiac angiography suites as well as with MDCT have offered direct comparisons of doses in infants and children undergoing diagnostic cardiac evaluation. It is with these dose data that assessment of risks, and ultimately the assessment of risk-benefit, can be better achieved

    CT radiation dose in children: a survey to establish age-based diagnostic reference levels in Switzerland

    Get PDF
    This work aimed at assessing the doses delivered in Switzerland to paediatric patients during computed tomography (CT) examinations of the brain, chest and abdomen, and at establishing diagnostic reference levels (DRLs) for various age groups. Forms were sent to the ten centres performing CT on children, addressing the demographics, the indication and the scanning parameters: number of series, kilovoltage, tube current, rotation time, reconstruction slice thickness and pitch, volume CT dose index (CTDI(vol)) and dose length product (DLP). Per age group, the proposed DRLs for brain, chest and abdomen are, respectively, in terms of CTDI(vol): 20, 30, 40, 60 mGy; 5, 8, 10, 12 mGy; 7, 9, 13, 16 mGy; and in terms of DLP: 270, 420, 560, 1,000 mGy cm; 110, 200, 220, 460 mGy cm; 130, 300, 380, 500 mGy cm. An optimisation process should be initiated to reduce the spread in dose recorded in this study. A major element of this process should be the use of DRLs
    corecore