41,073 research outputs found

    A Transverse Lattice QCD Model for Mesons

    Full text link
    QCD is analysed with two light-front continuum dimensions and two transverse lattice dimensions. In the limit of large number of colours and strong transverse gauge coupling, the contributions of light-front and transverse directions factorise in the dynamics, and the theory can be analytically solved in a closed form. An integral equation is obtained, describing the properties of mesons, which generalises the 't Hooft equation by including spin degrees of freedom. The meson spectrum, light-front wavefunctions and form factors can be obtained by solving this equation numerically. These results would be a good starting point to model QCD observables which only weakly depend on transverse directions, e.g. deep inelastic scattering structure functions.Comment: Lattice 2003 (theory), 3 page

    Measuring brand image: Shopping centre case studies

    Get PDF
    'Branding' is well known for consumer products but power has shifted from manufacturers' brands towards retailers'. The term 'image' is more common than 'brand' in the context of shopping centres, but 'branding' may become more important. In this study, the authors first investigated qualitatively, asking shoppers to describe centres in 'personality' terms and eliciting clear descriptive differences between centres. For example, one in-town centre was 'dull, boring and old-fashioned . . . not exciting, just OK'; a larger regional centre was 'trendy, prestigious . . . strong, vibrant, big and colourful'. Second, the authors evaluated six UK shopping centres quantitatively using a questionnaire survey (n = 287). The 'strong and vibrant' centre scored significantly higher than the 'dull and boring' one. Despite 'branding' being little used by shopping centres, those with the better 'brand images' tended to have larger catchment areas, sales and rental incomes. The authors contend that brand management could pay rewards in terms of customer numbers, sales turnover and rental income

    A derivation of Regge trajectories in large-N transverse lattice QCD

    Get PDF
    Large-N QCD is analysed in light-front coordinates with a transverse lattice at strong coupling. The general formalism can be looked up on as a d+n expansion with a stack of d-dimensional hyperplanes uniformly spaced in n transverse dimensions. It can arise by application of the renormalisation group transformations only in the transverse directions. At leading order in strong coupling, the gauge field dynamics reduces to the constraint that only colour singlet states can jump between the hyperplanes. With d=2, n=2 and large-N, the leading order strong coupling results are simple renormalisations of those for the 't Hooft model. The meson spectrum lies on a set of parallel trajectories labeled by spin. This is the first derivation of the widely anticipated Regge trajectories in a regulated systematic expansion in QCD.Comment: Lattice 2000 (spectrum), 5 pages, to appear in the proceeding

    The ART of IAM: The Winning Strategy for the 2006 Competition

    No full text
    In many dynamic open systems, agents have to interact with one another to achieve their goals. Here, agents may be self-interested, and when trusted to perform an action for others, may betray that trust by not performing the actions as required. In addition, due to the size of such systems, agents will often interact with other agents with which they have little or no past experience. This situation has led to the development of a number of trust and reputation models, which aim to facilitate an agent's decision making in the face of uncertainty regarding the behaviour of its peers. However, these multifarious models employ a variety of different representations of trust between agents, and measure performance in many different ways. This has made it hard to adequately evaluate the relative properties of different models, raising the need for a common platform on which to compare competing mechanisms. To this end, the ART Testbed Competition has been proposed, in which agents using different trust models compete against each other to provide services in an open marketplace. In this paper, we present the winning strategy for this competition in 2006, provide an analysis of the factors that led to this success, and discuss lessons learnt from the competition about issues of trust in multiagent systems in general. Our strategy, IAM, is Intelligent (using statistical models for opponent modelling), Abstemious (spending its money parsimoniously based on its trust model) and Moral (providing fair and honest feedback to those that request it)

    From fields to a super-cluster: the role of the environment at z=0.84 with HiZELS

    Full text link
    At z=0, clusters are primarily populated by red, elliptical and massive galaxies, while blue, spiral and lower-mass galaxies are common in low-density environments. Understanding how and when these differences were established is of absolute importance for our understanding of galaxy formation and evolution, but results at high-z remain contradictory. By taking advantage of the widest and deepest H-alpha narrow-band survey at z=0.84 over the COSMOS and UKIDSS UDS fields, probing a wide range of densities (from poor fields to rich groups and clusters, including a confirmed super-cluster with a striking filamentary structure), we show that the fraction of star-forming galaxies falls continuously from ~40% in fields to approaching 0% in rich groups/clusters. We also find that the median SFR increases with environmental density, at least up to group densities - but only for low and medium mass galaxies, and thus such enhancement is mass-dependent at z~1. The environment also plays a role in setting the faint-end slope (alpha) of the H-alpha luminosity function. Our findings provide a sharper view on galaxy formation and evolution and reconcile previously contradictory results at z~1: stellar mass is the primary predictor of star formation activity, but the environment also plays a major role.Comment: 5 pages, 4 figures, to appear in the proceedings of JENAM 2010 S2: `Environment and the Formation of Galaxies: 30 years later', ASSP, Springe

    Activation of the P2Y2 receptor regulates bone cell function by enhancing ATP release

    Get PDF
    Bone cells constitutively release ATP into the extracellular environment where it acts locally via P2 receptors to regulate bone cell function. Whilst P2Y2 receptor stimulation regulates bone mineralisation, the functional effects of this receptor in osteoclasts remain unknown. This investigation used the P2Y2 receptor knockout (P2Y2R−/−) mouse model to investigate the role of this receptor in bone. MicroCT analysis of P2Y2R−/− mice demonstrated age-related increases in trabecular bone volume (≤48%), number (≤30%) and thickness (≤17%). In vitro P2Y2R−/− osteoblasts displayed a 3-fold increase in bone formation and alkaline phosphatase activity, whilst P2Y2R−/− osteoclasts exhibited a 65% reduction in resorptive activity. Serum cross-linked C-telopeptide levels (CTX, resorption marker) were also decreased (≤35%). The resorption defect in P2Y2R−/− osteoclasts was rescued by the addition of exogenous ATP, suggesting that an ATP deficit could be a key factor in the reduced function of these cells. In agreement, we found that basal ATP release was reduced up to 53% in P2Y2R−/− osteoclasts. The P2Y2 receptor agonists, UTP and 2-thioUTP, increased osteoclast activity and ATP release in wild-type but not in P2Y2R−/− cells. This indicates that the P2Y2 receptor may regulate osteoclast function indirectly by promoting ATP release. UTP and 2-thioUTP also stimulate ATP release from osteoblasts suggesting that the P2Y2 receptor exerts a similar function in these cells. Taken together, our findings are consistent with the notion that the primary action of P2Y2 receptor signalling in bone is to regulate extracellular ATP levels

    Algorithms to automatically quantify the geometric similarity of anatomical surfaces

    Full text link
    We describe new approaches for distances between pairs of 2-dimensional surfaces (embedded in 3-dimensional space) that use local structures and global information contained in inter-structure geometric relationships. We present algorithms to automatically determine these distances as well as geometric correspondences. This is motivated by the aspiration of students of natural science to understand the continuity of form that unites the diversity of life. At present, scientists using physical traits to study evolutionary relationships among living and extinct animals analyze data extracted from carefully defined anatomical correspondence points (landmarks). Identifying and recording these landmarks is time consuming and can be done accurately only by trained morphologists. This renders these studies inaccessible to non-morphologists, and causes phenomics to lag behind genomics in elucidating evolutionary patterns. Unlike other algorithms presented for morphological correspondences our approach does not require any preliminary marking of special features or landmarks by the user. It also differs from other seminal work in computational geometry in that our algorithms are polynomial in nature and thus faster, making pairwise comparisons feasible for significantly larger numbers of digitized surfaces. We illustrate our approach using three datasets representing teeth and different bones of primates and humans, and show that it leads to highly accurate results.Comment: Changes with respect to v1, v2: an Erratum was added, correcting the references for one of the three datasets. Note that the datasets and code for this paper can be obtained from the Data Conservancy (see Download column on v1, v2

    Investigating the intrinsic noise limit of Dayem bridge NanoSQUIDs

    Get PDF
    NanoSQUIDs made from Nb thin films have been produced with nanometre loop sizes down to 200 nm, using weak-link junctions with dimensions less than 60 nm. These composite (W/Nb) single layer thin film devices, patterned by FIB milling, show extremely good low-noise performance ∼170 nΦ0 at temperatures between 5 and 8.5 K and can operate in rather high magnetic fields (at least up to 1 T). The devices produced so far have a limited operating temperature range, typically only 1–2 K. We have the goal of achieving operation at 4.2 K, to be compatible with the best SQUID series array (SSA) preamplifier available. Using the SSA to readout the nanoSQUIDs provides us with a means of investigating the intrinsic noise of the former. In this paper we report improved white noise levels of these nanoSQUIDs, enabling potential detection of a single electronic spin flip in a 1-Hz bandwidth. At low frequencies the noise performance is already limited by SSA preamplifier noise
    corecore