47 research outputs found

    Fine-Scale Mapping of Natural Variation in Fly Fecundity Identifies Neuronal Domain of Expression and Function of an Aquaporin

    Get PDF
    To gain insight into the molecular genetic basis of standing variation in fitness related traits, we identify a novel factor that regulates the molecular and physiological basis of natural variation in female Drosophila melanogaster fecundity. Genetic variation in female fecundity in flies derived from a wild orchard population is heritable and largely independent of other measured life history traits. We map a portion of this variation to a single QTL and then use deficiency mapping to further refine this QTL to 5 candidate genes. Ubiquitous expression of RNAi against only one of these genes, an aquaporin encoded by Drip, reduces fecundity. Within our mapping population Drip mRNA level in the head, but not other tissues, is positively correlated with fecundity. We localize Drip expression to a small population of corazonin producing neurons located in the dorsolateral posterior compartments of the protocerebrum. Expression of Drip–RNAi using both the pan-neuronal ELAV-Gal4 and the Crz-Gal4 drivers reduces fecundity. Low-fecundity RILs have decreased Crz expression and increased expression of pale, the enzyme encoding the rate-limiting step in the production of dopamine, a modulator of insect life histories. Taken together these data suggest that natural variation in Drip expression in the corazonin producing neurons contributes to standing variation in fitness by altering the concentration of two neurohormones

    Quantitative and Molecular Genetic Analyses of Mutations Increasing Drosophila Life Span

    Get PDF
    Understanding the genetic and environmental factors that affect variation in life span and senescence is of major interest for human health and evolutionary biology. Multiple mechanisms affect longevity, many of which are conserved across species, but the genetic networks underlying each mechanism and cross-talk between networks are unknown. We report the results of a screen for mutations affecting Drosophila life span. One third of the 1,332 homozygous P–element insertion lines assessed had quantitative effects on life span; mutations reducing life span were twice as common as mutations increasing life span. We confirmed 58 mutations with increased longevity, only one of which is in a gene previously associated with life span. The effects of the mutations increasing life span were highly sex-specific, with a trend towards opposite effects in males and females. Mutations in the same gene were associated with both increased and decreased life span, depending on the location and orientation of the P–element insertion, and genetic background. We observed substantialβ€”and sex-specificβ€”epistasis among a sample of ten mutations with increased life span. All mutations increasing life span had at least one deleterious pleiotropic effect on stress resistance or general health, with different patterns of pleiotropy for males and females. Whole-genome transcript profiles of seven of the mutant lines and the wild type revealed 4,488 differentially expressed transcripts, 553 of which were common to four or more of the mutant lines, which include genes previously associated with life span and novel genes implicated by this study. Therefore longevity has a large mutational target size; genes affecting life span have variable allelic effects; alleles affecting life span exhibit antagonistic pleiotropy and form epistatic networks; and sex-specific mutational effects are ubiquitous. Comparison of transcript profiles of long-lived mutations and the control line reveals a transcriptional signature of increased life span

    Genetic variation in a member of the laminin gene family affects variation in body composition in Drosophila and humans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of the present study was to map candidate loci influencing naturally occurring variation in triacylglycerol (TAG) storage using quantitative complementation procedures in <it>Drosophila melanogaster</it>. Based on our results from <it>Drosophila</it>, we performed a human population-based association study to investigate the effect of natural variation in <it>LAMA5 </it>gene on body composition in humans.</p> <p>Results</p> <p>We identified four candidate genes that contributed to differences in TAG storage between two strains of <it>D. melanogaster</it>, including <it>Laminin A </it>(<it>LanA</it>), which is a member of the Ξ± subfamily of laminin chains. We confirmed the effects of this gene using a viable <it>LanA </it>mutant and showed that female flies homozygous for the mutation had significantly lower TAG storage, body weight, and total protein content than control flies. <it>Drosophila LanA </it>is closely related to human <it>LAMA5 </it>gene, which maps to the well-replicated obesity-linkage region on chromosome 20q13.2-q13.3. We tested for association between three common single nucleotide polymorphisms (SNPs) in the human <it>LAMA5 </it>gene and variation in body composition and lipid profile traits in a cohort of unrelated women of European American (EA) and African American (AA) descent. In both ethnic groups, we found that SNP rs659822 was associated with weight (EA: <it>P </it>= 0.008; AA: <it>P </it>= 0.05) and lean mass (EA: <it>P= </it>0.003; AA: <it>P </it>= 0.03). We also found this SNP to be associated with height (<it>P </it>= 0.01), total fat mass (<it>P </it>= 0.01), and HDL-cholesterol (<it>P </it>= 0.003) but only in EA women. Finally, significant associations of SNP rs944895 with serum TAG levels (<it>P </it>= 0.02) and HDL-cholesterol (<it>P </it>= 0.03) were observed in AA women.</p> <p>Conclusion</p> <p>Our results suggest an evolutionarily conserved role of a member of the laminin gene family in contributing to variation in weight and body composition.</p

    A Conserved Role for Syndecan Family Members in the Regulation of Whole-Body Energy Metabolism

    Get PDF
    Syndecans are a family of type-I transmembrane proteins that are involved in cell-matrix adhesion, migration, neuronal development, and inflammation. Previous quantitative genetic studies pinpointed Drosophila Syndecan (dSdc) as a positional candidate gene affecting variation in fat storage between two Drosophila melanogaster strains. Here, we first used quantitative complementation tests with dSdc mutants to confirm that natural variation in this gene affects variability in Drosophila fat storage. Next, we examined the effects of a viable dSdc mutant on Drosophila whole-body energy metabolism and associated traits. We observed that young flies homozygous for the dSdc mutation had reduced fat storage and slept longer than homozygous wild-type flies. They also displayed significantly reduced metabolic rate, lower expression of spargel (the Drosophila homologue of PGC-1), and reduced mitochondrial respiration. Compared to control flies, dSdc mutants had lower expression of brain insulin-like peptides, were less fecund, more sensitive to starvation, and had reduced life span. Finally, we tested for association between single nucleotide polymorphisms (SNPs) in the human SDC4 gene and variation in body composition, metabolism, glucose homeostasis, and sleep traits in a cohort of healthy early pubertal children. We found that SNP rs4599 was significantly associated with resting energy expenditure (Pβ€Š=β€Š0.001 after Bonferroni correction) and nominally associated with fasting glucose levels (Pβ€Š=β€Š0.01) and sleep duration (Pβ€Š=β€Š0.044). On average, children homozygous for the minor allele had lower levels of glucose, higher resting energy expenditure, and slept shorter than children homozygous for the common allele. We also observed that SNP rs1981429 was nominally associated with lean tissue mass (Pβ€Š=β€Š0.035) and intra-abdominal fat (Pβ€Š=β€Š0.049), and SNP rs2267871 with insulin sensitivity (Pβ€Š=β€Š0.037). Collectively, our results in Drosophila and humans argue that syndecan family members play a key role in the regulation of body metabolism

    The relationship between the rate of transposition and transposable element copy number for copia and Doc retrotransposons of Drosophila melanogaster.

    No full text
    We present data on the relationship between the rate of transposition and copy number in the genome for the copia and Doc retrotransposons of Drosophila melanogaster. copia and Doc transposition rates were directly measured in sublines of the isogenic 2b line using individual males or females, respectively, with a range of copia copy numbers from 49 to 103 and Doc copy numbers from 112 to 235 per genome. Transposition rates varied from 3 x 10(-4) to 2 x 10(-2) for copia and from 2 x 10(-4) to 2 x 10(-3) for Doc. A positive relationship between transposition rate and copy number was found both for copia and for Doc when the data were analysed across all the 2b individuals; no significant correlation was found when the data were analysed across the subline means for both retrotransposons tested. Overall, correlation between copia and Doc transposition rate and their copy number in the genome, if any, was not negative, which would be expected if transposable elements (TEs) self-regulate their copy number. Thus, for copia and Doc no evidence for self-regulation was provided, and at least for these two TEs this hypothesis is not favoured for explaining the maintenance of the stable copy number that is characteristic for natural populations. The transposition rate of copia was measured twice, and a strong positive correlation between copy number and transposition rate both across individuals and subline means was found in 1994, while in 1995 no correlation was found. This fact is in agreement with the hypothesis that a positive correlation between the rate of transposition and TE copy number may be a default starting point for future host-TE coevolution

    Age dependence of the copia transposition rate is positively associated with copia transcript abundance in a Drosophila melanogaster isogenic line.

    No full text
    In males of an inbred Drosophila melanogaster line (2b), a significant age dependence of the transposition rate of the retrotransposon copia was noted. Among males of seven different age groups, the lowest transposition rate was detected in 12- to 15-day-old males, and the highest transposition rates were observed in 1- to 3- and in 24- to 27-day-old males: rates of 0.36 +/- 0.07, 1.09 +/- 0.20 and 117 +/- 0.27 transpositions per generation per gamete, respectively, were measured. This type of age dependence of the transposition rate indicates that copia transpositions do not occur in stem cells. Clusters of copia transpositions were detected, which confirms that copia transpositions occur at premeiotic stages of spermatogenesis. A positive association between copia transposition rate and copia transcript abundance in the testes was demonstrated for 1- to 3-, 12- to 15- and 24- to 27-day-old males, as well as for 1- to 3-day-old males of two closely related sublines of the 2b line that differed in copia transposition rate. Thus, copia transposition rate in males is apparently regulated at the level of copia RNA abundance in testes. The age dependence of the copia transposition rate and copia transcript abundance within the 2b line demonstrates that the physiological state of the host may affect expression and transposition of the retroelement
    corecore