625 research outputs found

    Ejecta and progenitor of the low-luminosity Type IIP supernova 2003Z

    Full text link
    The origin of low-luminosity Type IIP supernovae is unclear: they have been proposed to originate either from massive (about 25 Msun) or low-mass (about 9 Msun) stars. We wish to determine parameters of the low-luminosity Type IIP supernova 2003Z, to estimate a mass-loss rate of the presupernova, and to recover a progenitor mass. We compute the hydrodynamic models of the supernova to describe the light curves and the observed expansion velocities. The wind density of the presupernova is estimated using a thin shell model for the interaction with circumstellar matter. We estimate an ejecta mass of 14 Msun, an explosion energy of 2.45x10^50 erg, a presupernova radius of 229 Rsun, and a radioactive Ni-56 amount of 0.0063 Msun. The upper limit of the wind density parameter in the presupernova vicinity is 10^13 g/cm, and the mass lost at the red/yellow supergiant stage is less than 0.6 Msun assuming the constant mass-loss rate. The estimated progenitor mass is in the range of 14.4-17.4 Msun. The presupernova of SN 2003Z was probably a yellow supergiant at the time of the explosion. The progenitor mass of SN 2003Z is lower than those of SN 1987A and SN 1999em, normal Type IIP supernovae, but higher than the lower limit of stars undergoing a core collapse. We propose an observational test based on the circumstellar interaction to discriminate between the massive (about 25 Msun) and moderate-mass (about 16 Msun) scenarios.Comment: 8 pages, 9 figures, 3 tables, accepted for publication in Astronomy & Astrophysics; one reference remove

    Bell inequality violation by entangled single photon states generated from a laser, a LED or a Halogen lamp

    Get PDF
    In single-particle or intraparticle entanglement, two degrees of freedom of a single particle, e.g., momentum and polarization of a single photon, are entangled. Single-particle entanglement (SPE) provides a source of non classical correlations which can be exploited both in quantum communication protocols and in experimental tests of noncontextuality based on the Kochen-Specker theorem. Furthermore, SPE is robust under decoherence phenomena. Here, we show that single-particle entangled states of single photons can be produced from attenuated sources of light, even classical ones. To experimentally certify the entanglement, we perform a Bell test, observing a violation of the Clauser, Horne, Shimony and Holt (CHSH) inequality. On the one hand, we show that this entanglement can be achieved even in a classical light beam, provided that first-order coherence is maintained between the degrees of freedom involved in the entanglement. On the other hand, we prove that filtered and attenuated light sources provide a flux of independent SPE photons that, from a statistical point of view, are indistinguishable from those generated by a single photon source. This has important consequences, since it demonstrates that cheap, compact, and low power entangled photon sources can be used for a range of quantum technology applications

    Evidence of Asymmetry in SN 2007rt, a Type IIn Supernova

    Get PDF
    An optical photometric and spectroscopic analysis of the slowly-evolving Type IIn SN2007rt is presented, covering a duration of 481 days after discovery. Its earliest spectrum, taken approximately 100 days after the explosion epoch, indicates the presence of a dense circumstellar medium, with which the supernova ejecta is interacting. This is supported by the slowly-evolving light curve. A notable feature in the spectrum of SN 2007rt is the presence of a broad He I 5875 line, not usually detected in Type IIn supernovae. This may imply that the progenitor star has a high He/H ratio, having shed a significant portion of its hydrogen shell via mass-loss. An intermediate resolution spectrum reveals a narrow Halpha P-Cygni profile, the absorption component of which has a width of 128 km/s. This slow velocity suggests that the progenitor of SN 2007rt recently underwent mass-loss with wind speeds comparable to the lower limits of those detected in luminous blue variables. Asymmetries in the line profiles of H and He at early phases bears some resemblance to double-peaked features observed in a number of Ib/c spectra. These asymmetries may be indicative of an asymmetric or bipolar outflow or alternatively dust formation in the fast expanding ejecta. In addition, the late time spectrum, at over 240 days post-explosion, shows clear evidence for the presence of newly formed dust.Comment: Submitted to A&A on 4/2/2009. Accepted by A&A on 17/5/2009.15 pages plus 3 pages of online materia

    Circumstellar interaction in type Ibn supernovae and SN 2006jc

    Full text link
    I analyse peculiar properties of light curve and continua of enigmatic Ibn supernovae, including SN 2006jc, and argue in favour of the early strong circumstellar interaction. This interaction explains the high luminosity and fast flux rise of SN 1999cq, while the cool dense shell formed in shocked ejecta can explain the smooth early continuum of SN 2000er and unusual blue continuum of SN 2006jc. The dust is shown to condense in the cool dense shell at about day 50. Monte Carlo modelling of the He I 7065 \AA line profile affected by the dust occultation supports a picture, in which the dust resides in the fragmented cool dense shell, whereas He I lines originate from circumstellar clouds shocked and fragmented in the forward shock wave.Comment: 10 pages, 6 figures, MNRAS accepte

    Progenitor mass of the type IIP supernova 2005cs

    Full text link
    The progenitor mass of type IIP supernova can be determined from either hydrodynamic modeling of the event or pre-explosion observations. To compare these approaches, we determine parameters of the sub-luminous supernova 2005cs and estimate its progenitor mass. We compute the hydrodynamic models of the supernova to describe its light curves and expansion velocity data. We estimate a presupernova mass of 17.3 Msun, an explosion energy of 4.1x10^{50} erg, a presupernova radius of 600 Rsun, and a radioactive Ni-56 mass of 0.0082 Msun. The derived progenitor mass of SN 2005cs is 18.2 Msun, which is in-between those of low-luminosity and normal type IIP supernovae. The obtained progenitor mass of SN 2005cs is higher than derived from pre-explosion images. The masses of four type IIP supernovae estimated by means of hydrodynamic modeling are systematically higher than the average progenitor mass for the 9-25 Msun mass range. This result, if confirmed for a larger sample, would imply that a serious revision of the present-day view on the progenitors of type IIP supernovae is required.Comment: 9 pages, 9 figures, 2 tables, accepted for publication in Astronomy & Astrophysic

    Interacting Supernovae: Types IIn and Ibn

    Full text link
    Supernovae (SNe) that show evidence of strong shock interaction between their ejecta and pre-existing, slower circumstellar material (CSM) constitute an interesting, diverse, and still poorly understood category of explosive transients. The chief reason that they are extremely interesting is because they tell us that in a subset of stellar deaths, the progenitor star may become wildly unstable in the years, decades, or centuries before explosion. This is something that has not been included in standard stellar evolution models, but may significantly change the end product and yield of that evolution, and complicates our attempts to map SNe to their progenitors. Another reason they are interesting is because CSM interaction is an efficient engine for making bright transients, allowing super-luminous transients to arise from normal SN explosion energies, and allowing transients of normal SN luminosities to arise from sub-energetic explosions or low radioactivity yield. CSM interaction shrouds the fast ejecta in bright shock emission, obscuring our normal view of the underlying explosion, and the radiation hydrodynamics of the interaction is challenging to model. The CSM interaction may also be highly non-spherical, perhaps linked to binary interaction in the progenitor system. In some cases, these complications make it difficult to definitively tell the difference between a core-collapse or thermonuclear explosion, or to discern between a non-terminal eruption, failed SN, or weak SN. Efforts to uncover the physical parameters of individual events and connections to possible progenitor stars make this a rapidly evolving topic that continues to challenge paradigms of stellar evolution.Comment: Final draft of a chapter in the "SN Handbook". Accepted. 25 pages, 3 fig

    SN 2013df, a double-peaked IIb supernova from a compact progenitor and an extended H envelope

    Full text link
    Optical observations of the type IIb SN 2013df from a few days to about 250 days after explosion are presented. These observations are complemented with UV photometry taken by \textit{SWIFT} up to 60 days post-explosion. The double-peak optical light curve is similar to those of SNe 1993J and 2011fu although with different decline and rise rates. From the modelling of the bolometric light curve, we have estimated that the total mass of synthesised 56^{56}Ni in the explosion is ∼0.1\sim0.1 M⊙_{\odot}, while the ejecta mass is 0.8−1.40.8-1.4 M⊙_{\odot} and the explosion energy 0.4−1.2×10510.4-1.2 \times 10^{51}erg. In addition, we have estimated a lower limit to the progenitor radius ranging from 64−16964-169 R⊙R_{\odot}. The spectral evolution indicates that SN 2013df had a hydrogen envelope similar to SN 1993J (∼0.2\sim 0.2 M⊙_{\odot}). The line profiles in nebular spectra suggest that the explosion was asymmetric with the presence of clumps in the ejecta, while the [O\,{\sc i}] λ\lambdaλ\lambda63006300, 63646364 luminosities, may indicate that the progenitor of SN 2013df was a relatively low mass star ( ∼12−13\sim 12-13 M⊙_{\odot}).Comment: 18 pages, 11 figures, 9 tables, accepted for publication in MNRA

    The spectacular evolution of Supernova 1996al over 15 years: a low energy explosion of a stripped massive star in a highly structured environment

    Get PDF
    Spectrophotometry of SN 1996al carried out throughout 15 years is presented. The early photometry suggests that SN 1996al is a Linear type-II supernova, with an absolute peak of Mv ~ -18.2 mag. Early spectra present broad, asymmetric Balmer emissions, with super-imposed narrow lines with P-Cygni profile, and He I features with asymmetric, broad emission components. The analysis of the line profiles shows that the H and He broad components form in the same region of the ejecta. By day +142, the Halpha profile dramatically changes: the narrow P-Cygni profile disappears, and the Halpha is fitted by three emission components, that will be detected over the remaining 15 yrs of the SN monitoring campaign. Instead, the He I emissions become progressively narrower and symmetric. A sudden increase in flux of all He I lines is observed between 300 and 600 days. Models show that the supernova luminosity is sustained by the interaction of low mass (~1.15 Msun) ejecta, expelled in a low kinetic energy (~ 1.6 x 10^50 erg) explosion, with highly asymmetric circumstellar medium. The detection of Halpha emission in pre-explosion archive images suggests that the progenitor was most likely a massive star (~25 Msun ZAMS) that had lost a large fraction of its hydrogen envelope before explosion, and was hence embedded in a H-rich cocoon. The low-mass ejecta and modest kinetic energy of the explosion are explained with massive fallback of material into the compact remnant, a 7-8 Msun black hole.Comment: 27 pages, 23 figures, Accepted for publication in MNRA

    Explosion of a massive, He-rich star at z=0.16

    Get PDF
    We present spectroscopic and photometric data of the peculiar SN 2001gh, discovered by the 'Southern inTermediate Redshift ESO Supernova Search' (STRESS) at a redshift z=0.16. SN 2001gh has relatively high luminosity at maximum (M_B = -18.55 mag), while the light curve shows a broad peak. An early-time spectrum shows an almost featureless, blue continuum with a few weak and shallow P-Cygni lines that we attribute to HeI. HeI lines remain the only spectral features visible in a subsequent spectrum, obtained one month later. A remarkable property of SN 2001gh is the lack of significant spectral evolution over the temporal window of nearly one month separating the two spectra. In order to explain the properties of SN 2001gh, three powering mechanism are explored, including radioactive decays of a moderately large amount of 56Ni, magnetar spin-down, and interaction of SN ejecta with circumstellar medium. We favour the latter scenario, with a SN Ib wrapped in a dense, circumstellar shell. The fact that no models provide an excellent fit with observations, confirms the troublesome interpretation of the nature of SN 2001gh. A rate estimate for SN 2001gh-like event is also provided, confirming the intrinsic rarity of these objects.Comment: 11 pages, 8 figures, 3 tables. Accepted by MNRA

    Moderately Luminous type II Supernovae

    Get PDF
    Core-collapse Supernovae (CC-SNe) descend from progenitors more massive than about 8 Msun. Because of the young age of the progenitors, the ejecta may eventually interact with the circumstellar medium (CSM) via highly energetic processes detectable in the radio, X-ray, ultraviolet (UV) and, sometimes, in the optical domains. In this paper we present ultraviolet, optical and near infrared observations of five type II SNe, namely SNe 2009dd, 2007pk, 2010aj, 1995ad, and 1996W. Together with few other SNe they form a group of moderately luminous type II events. We collected photometry and spectroscopy with several telescopes in order to construct well-sampled light curves and spectral evolutions from the photospheric to the nebular phases. Both photometry and spectroscopy indicate a degree of heterogeneity in this sample. The light curves have luminous peak magnitudes (−16.95<MB<−18.70-16.95<M_{B}<-18.70). The ejected masses of ^56\ni for three SNe span a wide range of values (2.8×10−22.8\times10^{-2}Msun<<M(\ni)<1.4×10−1<1.4\times10^{-1}Msun), while for a fourth (SN2010aj) we could determine a stringent upper limit (7×10−37\times10^{-3}Msun). Clues of interaction, such as the presence of high velocity (HV) features of the Balmer lines, are visible in the photospheric spectra of SNe 2009dd and 1996W. For SN2007pk we observe a spectral transition from a type IIn to a standard type II SN. Modelling the observations of SNe 2009dd, 2010aj and 1995ad with radiation hydrodynamics codes, we infer kinetic plus thermal energies of about 0.2-0.5 foe, initial radii of 2-5×1013\times10^{13} cm and ejected masses of ∼\sim5.0-9.5 Msun. These values suggest moderate-mass, super-asymptotic giant branch (SAGB) or red super-giants (RSG) stars as SN precursors, in analogy with other luminous type IIP SNe 2007od and 2009bw.Comment: 28 pages, 27 fig, accepted by A&A, 3 pages of online material, abstract abridged. revised significantly with respect to the previous versio
    • …
    corecore