77 research outputs found

    Interfacial phenomena in molten metals-refractory borides systems

    Get PDF
    Non-oxide ceramics, such as carbides, nitrides and borides represent one of the fastest growing classes of new advanced materials. Among them, transition metals ceramic diborides, in particular Titanium, Zirconium and Hafnium diborides, are members of a family of materials with extremely high melting temperatures, high thermal and electrical conductivity, excellent thermal shock resistance, high hardness and chemical inertness. These materials -Ultra High Temperature Ceramics (UHTCs)- constitute a class of promising materials for use in high performance applications, where high temperatures, high thermal fluxes, severe surface stresses are involved. However, the possibility to exploit commercially their peculiar characteristics often depends to a great extent on the ability to join the ceramic parts one to the other or to special metallic alloys. As the behaviour of a metal-ceramic joint is ruled by the chemical and the physical properties of the interface, the knowledge of wettability, interfacial tensions and interfacial reactions is mandatory to understand what happens at the liquid metal-ceramic interface during joining processes. Provided that a large number of ceramic materials are not wet (or poorly wet) by pure liquid metals, their wettability by liquid-metal systems can be significantly modified by using either non-reactive metallic solutes capable of adsorption at the metal-ceramic interface, or reactive elements, so that the energetic contribution coming from reaction (and dissolution) free energy release could contribute to lower the total interfacial energy of the solid-liquid system, increasing, at the same time, and thermodynamic adhesion. Recent data on the wettability and the interfacial characteristics of different metal-ceramic systems, and in particular of (Ti,Zr,Hf)B2 in contact with liquid Ag and its alloys (Cu, Ti, Zr, Hf) are reported and discussed as a function of time, compositions and structure of the ceramic and of the alloy involved. In particular new data are shown about the interactions of Ag, Cu and Au in contact with ZrB2. Models are also used to interpret the wetting behaviour and the adsorption/reaction interfacial phenomena involved

    Contracts for Systems Design: Theory

    Get PDF
    Aircrafts, trains, cars, plants, distributed telecommunication military or health care systems,and more, involve systems design as a critical step. Complexity has caused system design times and coststo go severely over budget so as to threaten the health of entire industrial sectors. Heuristic methods andstandard practices do not seem to scale with complexity so that novel design methods and tools based on astrong theoretical foundation are sorely needed. Model-based design as well as other methodologies suchas layered and compositional design have been used recently but a unified intellectual framework with acomplete design flow supported by formal tools is still lacking.Recently an “orthogonal” approach has been proposed that can be applied to all methodologies introducedthus far to provide a rigorous scaffolding for verification, analysis and abstraction/refinement: contractbaseddesign. Several results have been obtained in this domain but a unified treatment of the topic that canhelp in putting contract-based design in perspective is missing. This paper intends to provide such treatmentwhere contracts are precisely defined and characterized so that they can be used in design methodologiessuch as the ones mentioned above with no ambiguity. In addition, the paper provides an important linkbetween interface and contract theories to show similarities and correspondences.This paper is complemented by a companion paper where contract based design is illustrated throughuse cases

    Contracts for System Design

    Get PDF
    Systems design has become a key challenge and differentiating factor over the last decades for system companies. Aircrafts, trains, cars, plants, distributed telecommunication military or health care systems, and more, involve systems design as a critical step. Complexity has caused system design times and costs to go severely over budget so as to threaten the health of entire industrial sectors. Heuristic methods and standard practices do not seem to scale with complexity so that novel design methods and tools based on a strong theoretical foundation are sorely needed. Model-based design as well as other methodologies such as layered and compositional design have been used recently but a unified intellectual framework with a complete design flow supported by formal tools is still lacking albeit some attempts at this framework such as Platform-based Design have been successfully deployed. Recently an "orthogonal" approach has been proposed that can be applied to all methodologies proposed thus far to provide a rigorous scaffolding for verification, analysis and abstraction/refinement: contractbased design. Several results have been obtained in this domain but a unified treatment of the topic that can help in putting contract-based design in perspective is still missing. This paper intends to provide such treatment where contracts are precisely defined and characterized so that they can be used in design methodologies such as the ones mentioned above with no ambiguity. In addition, the paper provides an important link between interfaces and contracts to show similarities and correspondences. Examples of the use of contracts in design are provided as well as in depth analysis of existing literature.Cet article fait le point sur le concept de contrat pour la conception de systèmes. Les contrats que nous proposons portent, non seulement sur des propriétés de typage de leurs interfaces, mais incluent une description abstraite de comportements. Nous proposons une méta-théorie, ou, si l'on veut, une théorie générique des contrats, qui permet le développement séparé de sous-systèmes. Nous montrons que cette méta-théorie se spécialise en l'une ou l'autre des théories connues

    Contracts for Systems Design: Methodology and Application cases

    Get PDF
    Recently, contract based design has been proposed as an ”orthogonal” approach that can beapplied to all methodologies proposed so far to cope with the complexity of system design. Contract baseddesign provides a rigorous scaffolding for verification, analysis and abstraction/refinement. Companionreport RR-8759 proposes a unified treatment of the topic that can help in putting contract-based design in perspective.This paper complements RR-8759 by further discussing methodological aspects of system design withcontracts in perspective and presenting two application cases.The first application case illustrates the use of contracts in requirement engineering, an area of system designwhere formal methods were scarcely considered, yet are stringently needed. We focus in particular to thecritical design step by which sub-contracts are generated for suppliers from a set of different viewpoints(specified as contracts) on the global system. We also discuss important issues regarding certification inrequirement engineering, such as consistency, compatibility, and completeness of requirements.The second example is developed in the context of the Autosar methodology now widely advocated inthe automotive sector. We propose a contract framework to support schedulability analysis, a key step inAutosar methodology. Our aim differs from the many proposals for compositional schedulability analysisin that we aim at defining sub-contracts for suppliers, not just performing the analysis by parts—we knowfrom companion paper RR-8759 that sub-contracting to suppliers differs from a compositional analysis entirelyperformed by the OEM. We observe that the methodology advocated by Autosar is in contradiction withcontract based design in that some recommended design steps cannot be refinements. We show how tocircumvent this difficulty by precisely bounding the risk at system integration phase. Another feature ofthis application case is the combination of manual reasoning for local properties and use of the formalcontract algebra to lift a collection of local checks to a system wide analysis

    Interactions and Wetting of Refractory Diborides by Liquid Metals

    No full text
    Transition elements diboride ceramics are a class of promising materials for high temperature and highly aggressive applications. However, the possibility to exploit their peculiar characteristics often depends, to a great extent, on the ability to join the ceramic parts one to the other or to special alloys. As the behaviour of a metal-ceramic joint is ruled by the chemical and the physical properties of the interface, the knowledge of wettability, interfacial tensions and interfacial reactions is mandatory to understand what happens at the liquid metal-ceramic interface during the joining process. Data on the wettability and the interfacial characteristics of different metal-ceramic systems, and in particular of (Ti,Zr,Hf)B2 in contact with liquid non-reactive metals Cu, Ag, Au and with "reactive " Ni and Ni alloys, is reported and critically discussed. These data, obtained in our laboratory by an advanced sessile-drop technique, are discussed in terms of chemical and thermodynamic properties of the various phases in contact and of their surface properties. Moreover, we show how an ab initio approach can be performed in order to interpret the wetting behaviour and the adsorption/reaction interfacial phenomena involved. Interfacial energetics at the atomistic level is being increasingly investigated by means of sophisticated modelling techniques like pseudopotential-based Density Functional Theory (DFT). Given the complexity calculations, the study is limited to the ideal work of separation, i.e., with plastic and diffusional degrees of freedom suppressed. Moreover, the dependence of the adhesion behaviour on the electronic structure at the interface and on the interface epitaxy and composition is discussed. In particular, the inspection of the electronic density of states projected on selected interface atoms gives a justification of the particularly strong adhesion between Au and ZrB2. This microscopic analysis will ultimately allow forecasting and designing a novel class of tailored materials
    • …
    corecore