42 research outputs found

    Fabrication and transport of large-scale molecular tunnel-junction arrays

    Get PDF
    We demonstrate a method for the simultaneous fabrication (without the need of expensive e-beam systems) of large arrays of nanodevices working at room temperature. The electrode gap is defined by a selective wet-etching of a AlGaAs/GaAs quantum well structure and controlled with nanometer precision. A selective oxidation of the Al rich barrier reduces the bulk leakage current by six orders of magnitude and extends the applicability of the produced devices to room temperature functionality. As a demonstration, we employ here these nanojunctions to investigate transport in molecular tunnel-junctions based on individual Azurins, a blue copper protein, under ambient conditions. This approach opens the way to the fabrication of complex circuits consisting of different nanodevices

    Synthesis, characterization and DNA interactions of [Pt3(TPymT)Cl3], the trinuclear platinum(II) complex of the TPymT ligand

    Get PDF
    The triplatinum complex of the 2,4,6-Tris(2-pyrimidyl)-1,3,5-triazine ligand, Pt3TPymT hereafter, has been prepared and characterized for the first time. NMR studies point out that the three platinum(II) centers possess an identical coordination environment. The interactions of Pt3TPymT with DNA were explored in comparison to the free ligand. Specifically, fluorescence, mass spectrometry, viscometry and melting measurements were carried out. In contrast to expectations, the obtained data reveal that no intercalative binding takes place; we propose that binding of Pt3TPymT to DNA mainly occurs through external/groove binding

    A nanobiosensor to detect single hybridization events

    Get PDF
    An economical nanoarray method to electrically detect hybridization events is demonstrated. As a proof of concept, we fabricated a sensor for DNA sequencing, in which targets are oligonucleotides conjugated to gold nanoparticles. As a consequence of target–probe binding events, a conductive bridge forms between two electrodes, resulting in a quantized change in conductivity. This enables a robust detection of a few (down to single) hybridization events and can be potentially applied also to other binding events (like specific interactions between proteins, antibodies, ligands and receptors). Moreover, target amplification techniques (such as PCR) are no longer necessary

    Lermontov crater on Mercury: Geology, morphology and spectral properties of the coexisting hollows and pyroclastic deposits

    Get PDF
    Abstract We present a multidisciplinary analysis of Lermontov crater, located at 15.24°N, −48.94°E in the Kuiper quadrangle of Mercury. By means of MESSENGER multiband MDIS-WAC and monochrome MDIS-NAC images, we prepare a high-resolution geological map of the crater and its closest surroundings, highlighting the presence of coexisting hollows and pyroclastic deposits on its floor. On the photometrically corrected MDIS-WAC multiband dataset, we apply an unsupervised clustering technique that spectrally separates the different materials located both inside and outside Lermontov crater. We observe that the pyroclastic deposits located on the crater's floor have a steep, red spectral behaviour dominated by the presence of a mixture of various pyroxenes containing Ti and Ni. On the contrary, the vents' rims are characterised by several hollows whose spectral slope is bluer than that of the pyroclastic deposits. By comparing the vent hollows to the hollows located farther out on the crater floor, we observe a steeper 0.62–0.82 μm spectral trend for those within the vents. The vent hollows' spectrum is more similar to the pyroclastic one in the above mentioned wavelength range. In addition, the vent hollows 0.55 μm absorption band could be related to CaS, while the small differences in slope at 0.48 μm and 0.62 μm could be due to the presence of other volatiles compounds, such as MgS or chlorides. When compared to hollows located in other hermean geological settings, Lermontov hollows are characterised by steeper spectra. This supports the interpretation that when hollows form, their bright deposits do not completely overwrite the spectral signature of the surrounding terrain, and their spectroscopic appearance is mixed with the composition of the terrain where they form

    The Insertion and Transport of Anandamide in Synthetic Lipid Membranes Are Both Cholesterol-Dependent

    Get PDF
    International audienceBackground: Anandamide is a lipid neurotransmitter which belongs to a class of molecules termed the endocannabinoids involved in multiple physiological functions. Anandamide is readily taken up into cells, but there is considerable controversy as to the nature of this transport process (passive diffusion through the lipid bilayer vs. involvement of putative proteic transporters). This issue is of major importance since anandamide transport through the plasma membrane is crucial for its biological activity and intracellular degradation. The aim of the present study was to evaluate the involvement of cholesterol in membrane uptake and transport of anandamide.Methodology/Principal Findings: Molecular modeling simulations suggested that anandamide can adopt a shape that is remarkably complementary to cholesterol. Physicochemical studies showed that in the nanomolar concentration range, anandamide strongly interacted with cholesterol monolayers at the air-water interface. The specificity of this interaction was assessed by: i) the lack of activity of structurally related unsaturated fatty acids (oleic acid and arachidonic acid at 50 nM) on cholesterol monolayers, and ii) the weak insertion of anandamide into phosphatidylcholine or sphingomyelin monolayers. In agreement with these data, the presence of cholesterol in reconstituted planar lipid bilayers triggered the stable insertion of anandamide detected as an increase in bilayer capacitance. Kinetics transport studies showed that pure phosphatidylcholine bilayers were weakly permeable to anandamide. The incorporation of cholesterol in phosphatidylcholine bilayers dose-dependently stimulated the translocation of anandamide.Conclusions/Significance: Our results demonstrate that cholesterol stimulates both the insertion of anandamide into synthetic lipid monolayers and bilayers, and its transport across bilayer membranes. In this respect, we suggest that besides putative anandamide protein-transporters, cholesterol could be an important component of the anandamide transport machinery. Finally, this study provides a mechanistic explanation for the key regulatory activity played by membrane cholesterol in the responsiveness of cells to anandamide

    Colorectal Cancer Stage at Diagnosis Before vs During the COVID-19 Pandemic in Italy

    Get PDF
    IMPORTANCE Delays in screening programs and the reluctance of patients to seek medical attention because of the outbreak of SARS-CoV-2 could be associated with the risk of more advanced colorectal cancers at diagnosis. OBJECTIVE To evaluate whether the SARS-CoV-2 pandemic was associated with more advanced oncologic stage and change in clinical presentation for patients with colorectal cancer. DESIGN, SETTING, AND PARTICIPANTS This retrospective, multicenter cohort study included all 17 938 adult patients who underwent surgery for colorectal cancer from March 1, 2020, to December 31, 2021 (pandemic period), and from January 1, 2018, to February 29, 2020 (prepandemic period), in 81 participating centers in Italy, including tertiary centers and community hospitals. Follow-up was 30 days from surgery. EXPOSURES Any type of surgical procedure for colorectal cancer, including explorative surgery, palliative procedures, and atypical or segmental resections. MAIN OUTCOMES AND MEASURES The primary outcome was advanced stage of colorectal cancer at diagnosis. Secondary outcomes were distant metastasis, T4 stage, aggressive biology (defined as cancer with at least 1 of the following characteristics: signet ring cells, mucinous tumor, budding, lymphovascular invasion, perineural invasion, and lymphangitis), stenotic lesion, emergency surgery, and palliative surgery. The independent association between the pandemic period and the outcomes was assessed using multivariate random-effects logistic regression, with hospital as the cluster variable. RESULTS A total of 17 938 patients (10 007 men [55.8%]; mean [SD] age, 70.6 [12.2] years) underwent surgery for colorectal cancer: 7796 (43.5%) during the pandemic period and 10 142 (56.5%) during the prepandemic period. Logistic regression indicated that the pandemic period was significantly associated with an increased rate of advanced-stage colorectal cancer (odds ratio [OR], 1.07; 95%CI, 1.01-1.13; P = .03), aggressive biology (OR, 1.32; 95%CI, 1.15-1.53; P < .001), and stenotic lesions (OR, 1.15; 95%CI, 1.01-1.31; P = .03). CONCLUSIONS AND RELEVANCE This cohort study suggests a significant association between the SARS-CoV-2 pandemic and the risk of a more advanced oncologic stage at diagnosis among patients undergoing surgery for colorectal cancer and might indicate a potential reduction of survival for these patients

    Concepts for Developing Physical Gels of Chitosan and of Chitosan Derivatives

    Get PDF
    Chitosan macro- and micro/nano-gels have gained increasing attention in recent years, especially in the biomedical field, given the well-documented low toxicity, degradability, and non-immunogenicity of this unique biopolymer. In this review we aim at recapitulating the recent gelling concepts for developing chitosan-based physical gels. Specifically, we describe how nowadays it is relatively simple to prepare networks endowed with different sizes and shapes simply by exploiting physical interactions, namely (i) hydrophobic effects and hydrogen bonds—mostly governed by chitosan chemical composition—and (ii) electrostatic interactions, mainly ensured by physical/chemical chitosan features, such as the degree of acetylation and molecular weight, and external parameters, such as pH and ionic strength. Particular emphasis is dedicated to potential applications of this set of materials, especially in tissue engineering and drug delivery sectors. Lastly, we report on chitosan derivatives and their ability to form gels. Additionally, we discuss the recent findings on a lactose-modified chitosan named Chitlac, which has proved to form attractive gels both at the macro- and at the nano-scale

    Surgical treatment with Ligasure® Precise of schwannoma of brachial plexus: case report

    Get PDF
    We present a case of bulky schwannoma arising from the brachial plexus treated by a new surgical device. A 38-year-old man presented with a slow-growing left-sided supraclavicular mass and complained paresthesia of the third and forth fingers of the hand and forearm weakness. Physical examination revealed Tinel’s sign. A CT-scan revealed a solid mass situated in the left profound supraclavicular fossa. The tumour was resected with the utilization of bipolar vessel sealing system (Ligasure® Precise). This device is very useful in suturless removal of masses localized in deep supraclavicular fossa. During the operation, care was taken to preserve the nerve functio
    corecore