16 research outputs found

    Synergistic effects of recombinant AGAAN antimicrobial peptide with organic acid against foodborne pathogens attached to chicken meat

    Get PDF
    Background and Objective: Fresh chicken meat includes the capacity to contain foodborne pathogens. A previous study has demonstrated efficacy of recombinant AGAAN antimicrobial peptide against various bacterial strains. In general, AGAAN is a newly discovered antimic-robial peptide with a unique cationic alpha-helical structure. The peptide is originated from the skin secretions of Agalychnis annae. This peptide showed a significant affinity towards the negatively-charged microbial lipid bilayer, as previously demonstrated by the experimental and in-silico analyses. However, the major concerns include high production costs, limited expression, laborious process and potential toxicity associated with concentrated peptides. In this research, the synergistic effects with organic acid were addressed to decrease these problems while preserving its bactericidal activity. Material and Methods: Recombinant AGAAN and organic acids were assessed on Staphylococcus aureus ATCC 6538 and Escherichia coli ATCC 8739. This was carried out by assessing minimum inhibitory concentration and fractional inhibitory concentration. In addition, effects of the combination on bacterial membrane integrity by carrying out beta-gala-ctosidase assessment. Additionally, the potential efficacy of this combination in preserving poultry meat was investigated. Results and Conclusion: Minimum inhibitory concentration of the recombinant AGAAN against the two bacterial strains was 0.15 mg.ml-1. In contrast, the minimum inhibitory concentration of acetic acid against Staphylococcus aureus and Escherichia coli were 0.2 and 0.25% v v-1, respectively. The combination demonstrated significant synergy, as evidenced by fractional inhibitory indices of 0.375 against the two foodborne pathogens. Based on the study, the combination effectively inhibited proliferation of these disease-causing microorganisms that led to foodborne illnesses within 300 min. Presence of intracellular beta-galactosidase indicated that the combination of factors has caused damages to the cell membrane, resulting in its compromised integrity. Red blood cells exposed to various concentrations of recombinant AGAAN and acetic acid did not result in hemolysis. Results showed significant differences (p < 0.05) in all the experiments on meat samples that received treatments with recombinant AGAAN and acetic acid. The current study detected that a combination of recombinant AGAAN antimicrobial peptide with organic acid could effectively inhibit growth of pathogens at lower concentrations. Data presented in this study can help food industries develop further efficient cost-effective antimicrobial uses. Introduction   Prevalence of foodborne diseases has emerged as a significant global health concern. The World Health Organization (WHO) report indicates that nearly 600 million cases of foodborne illnesses occur annually due to the consumption of food substances contaminated with microorganisms and chemicals [1]. Food contamination and increases in the risk of foodborne diseases are caused by pathogenic microorganisms [2]. Meat and meat products are important sources of nutrients for humans due to their high protein composition and other essential nutrients [3].  However, these foods provide appropriate environments for the growth of foodborne microbes due to their high water content and nutrients, [4]. A significant number of studies have shown that Staphylococcus aureus and Escherichia coli are associated with meat contamination [5-7]. The S. aureus is a facultative anaerobic, Gram-positive non-spore-forming bacterium [8]. It is a major problem in foodborne illnesses [9]. The S. aureus infections cause significant morbidity and mortality in developing and developed countries [10]. Similarly, E. coli is a non-spore-forming bacterium and the major cause of foodborne diseases in Gram-negative bacteria. Disease-causing strains of E. coli can infect the stomach, leading to serious abdominal symptoms [11]. Previous studies have primarily concentrated on spore-forming microorganisms, thereby overlooking non-spore-forming ones such as E. coli and S. aureus. Based on their contribution to foodborne illnesses, it is important to develop a cost-effective user-friendly approach to slow their rapid proliferation in food products. Organic acids have been used as antimicrobial agents to inhibit foodborne pathogenic bacterial growth in chicken meats during processing [12]. Due to the potential resistance development by microorganisms, there are needs of drug alternatives that can efficiently kill resistant bacteria and enhance preservation [13]. Antimicrobial peptides (AMP) are produced by living organisms and include critical functions in protecting hosts against infections [14,15]. Likelihood of microbes exhibiting resistance to AMP is exceedingly low because of their wide range of mechanisms of action. Multiple studies have emphasized potential of AMP as a viable option for preventing meat spoilage and foodborne diseases [16-19]. In a previous investigation by the current authors, recombinant AGAAN (rAGAAN) effectively was cloned, expressed and analytically characterized [20]. Technically, AGAAN is a novel antimi-crobial peptide with a cationic α-helical structure from the skin secretions of the blue-sided frogs. The rAGAAN is stable at various temperatures and pH and destroys a wide range of bacteria [20]. A hemolytic assay has shown that the peptide is relatively non-toxic to mammalian red blood cells (RBCs). Combination of these characteristics with its rapid killing kinetics demonstrates that rAGAAN includes the potential as an effective food preservative against foodborne pathogens. Nevertheless, major issues include exorbitant production expenses, labor-intensive procedures and potential toxicity of using high concentrations of peptides. Combining two or more AMPs may boost antimicrobial activity at lower doses [21]. The present study assessed pairwise combinations of the rAGAAN with formic and acetic acids against E. coli and S. aureus. Selection of these two organic acids was based on their high effectiveness against the highlighted bacterial strains. In addition, FAO/WHO Expert Committee on Food Additives has classified acetic and formic acids as generally regarded as safe. The former chemical was assigned to an unrestricted group acceptance daily intake (ADI), while the latter was assigned to an ADI range of 0–3 mg.kg-1 [22]. Combination of rAGAAN and these organic acids could decrease the concentration while preserving their potentially bactericidal activity. Differences in their mechanisms of action necess-itate assessment of synergy in membrane permeation and kinetics of inactivation. This study could provide an additional option for poultry industries to protect chicken meats from pathogens. Materials and Methods 2.1 Bacterial strains Department of Microbiology at King Mongkut's University of Technology Thonburi in Bangkok, Thailand, supplied the foodborne pathogenic strains of E. coli ATCC 8739 and S. aureus ATCC 6538. 2.2 Recombinant AGAAN peptide expression and purification The rAGAAN was produced based on the method of Ajingi et al., [20]. Briefly, the recombinant plasmid (pET-AGAAN) was transformed into E. coli BL21 (DE 3) competent cells. A colony of the competent cells with recombinant plasmids was inoculated into Luria-Bertani (LB) broth supplemented with chloramphenicol and ampicillin and grown at 37 °C and 200 rpm overnight. Then, 1% v v-1 from the overnight culture was introduced into a fresh 1-l LB broth supplemented with chloramphenicol and ampicillin as well as 1% w v-1 glucose. Culture was grown to an optical density (OD 600 nm) range of 0.4–0.6 at 37 °C and 200 rpm. Then, rAGAAN was expressed through induction with isopropyl β-D-1-thiogalactopyranoside at a concentration of 500 mM. Culture was grown at 16 °C for 18 h at 150 rpm. Cells were collected through centrifugation at 6,120× g for 30 min at 4 °C. Then, cells were suspended in 10 ml of buffer solution (10 mM Tris-HCl, 1 M NaCl; pH 8.0). These were subjected to sonication at an amplitude of 60% for 2 min, repeated for five cycles to induce cell disruption. Supernatant was purified after sonication and centrifugation at 6,120× g for 25 min at 4 ℃ using HisTrap FF column linked to the FPLC system. The column was pre-equilibrated with binding buffer (10 mM Tris-HCl, 1 M NaCl; pH 8.0). Elution of the bound peptide was carried out using buffer B (10 mM Tris-HCl, 1 M NaCl, 250 mM imid-azole; pH 8.0). Then, dialysis was carried out overnight at 4 °C using 50 mM Tris-HCl solution. Then, peptide was concentrated using 3-kDa centricon centrifugal filter tubes (Amicon, Germany). Concentration of the rAGAAN was measured using Bradford protein assay and its purity was assessed using 16% tricine-sodium dodecyl sulfate–polyacrylamide gel electrophoresis (tricine-SDS-PAGE). 2.3 rAGAAN and organic acid preparation The rAGAAN was formulated in milligrams per milliliter (mg.ml-1). It was dissolved in 1× phosphate-buffered saline (PBS), whereas the organic acids were formulated in percentages (% v v-1) by dissolving in distilled water (DW). 2.4 Culture preparation A volume of 20 μl of microbial stock, previously stored at -80 ◦C, were plated on LB agar. The resulting culture was incubated at 37 oC for 18 h. Then, subculture process was carried out for each strain under identical conditions to preserve integrity and purity of the cells. On the next day, a suspension was generated by transferring isolated colonies into sterilized 10-ml LB media. The bacterial strains were cultured until they reached an OD of 108 cfu.ml-1. This measurement was achieved at 600 nm using spectrophot-ometer (U-2900UV/VIS Hitachi Tokyo, Japan). Concen-tration was modified to 105 cfu.ml-1 using sterile LB broth. 2.5 Minimum inhibitory concentration assessment Briefly, 50 μl of the inoculated sample were administered into each well of the 96-well plates. Then, aliquots of 50 μl were dispensed into the wells, containing rAGAAN and organic acids at various concentrations. The 96-well plates with the lids closed were incubated at 37 °C for 18 h. Results were analyzed at 600 nm using microplate reader (BioTek, synergy H1, Winooski, USA). Control contained 100 μl of the bacterial inoculum. The MIC values included the lowest concentrations of the antimicrobial agents that cause bacterial growth inhibition. 2.6 Synergistic effects of rAGAAN with acetic and formic acids Combination effects of rAGAAN with organic acids against the bacterial strains were assessed using checkerboard method. Briefly, 18-h cultures in LB broth were used to inoculate fresh LB broth to achieve a cell density of approximately 105 cfu.ml-1. Generally, 50 μl of the inoculated sample were added into 96-well microplates. Then, rAGAAN and organic acids were transferred into the 96-well microplates with increasing concentrations arran-ged in columns and rows, respectively. The organic acids were mixed with rAGAAN separately to assess their combinatorial effects on pathogenic bacteria. The purpose was to decrease the effective concentration of rAGAAN while preserving its antimicrobial activity. Assessment of the synergistic interactions involved the summation of the fractional inhibitory concentration indices (FICI) as Eq. 1 [23].                                                                                                  Eq. 1 where, FICI ≤ 0.5 indicated synergistic relationships between the rAGAAN and organic acids that increased the antimicrobial activity, FICI > 0.5–4.0 was indifferent and FICI > 4.0 was antagonistic. 2.7 Kinetics of inactivation The OD of bacterial strain was measured to assess the rate of inactivation when treated with rAGAAN, acetic acids or their combination. Bacterial culture, diluted in LB broth to a concentration of approximately 105 cfu.ml-1, was added to 96 well plates. The rAGAAN and acetic acid were added at their minimum inhibitory concentration (MIC) levels, individually and in combination with their fractional inhibitory concentration (FICI) at 1×, 2× and 3× to separate wells. The 96-well plate was incubated at 37 °C. The procedure entailed monitoring the rate of inactivation for various bacterial strains by measuring the OD at consistent intervals of 1 h for 5 h. The OD was measured using spectrophotometer set at 600 nm and microplate reader (BioTek, synergy H1, Winooski, USA). 2.8 β-Galactosidase assay The β-galactosidase assay was carried out to assess effects of the rAGAAN and acetic acid or their combination on membranes of the bacteria. First, E. coli was inoculated into lactose broth and incubated at 37 °C for 18 h to stimulate β-galactosidase production. The bacterial cells were centrifuged and the pellet was washed thrice with 1× PBS. Then, the bacterial concentration was modified to roughly 105 cfu.ml-1 in 1× PBS solution. Moreover, 50 μl of purified rAGAAN, acetic acid and their combination at 1× FICI, 2× FICI and 3× FICI were added into wells of a microplate containing 50 μl of E. coli cell suspension. A volume of 30 μl of O-nitrophenyl-β-D-galactoside (ONPG) were added into every well of the microplate. The microplate was incubated at 37 °C and activity was assessed by measuring the spectrophotometric absorbance at 405 nm and various time intervals. 2.9 Hemolysis assay The RBC lytic assay was carried out based on a procedure by Taniguchi et al. [24] with minor adjustments. The RBCs were washed thrice in 1× PBS and centrifuged at 14,530× g for 10 min. Pellet was dissolved in 1× PBS to achieve a concentration of 4%. Generally, 500 μl of blood were mixed with 500 μl of rAGAAN and acetic acid, indivi-dually and in various combinations (1×FICI, 2×FICI, and 3×FICI). The positive control included a solution containing 0.1% TritonX-100, while the negative control included a solution containing 1× PBS. Solution was incubited in microtubes at 37°C for 1 h and centrifugation was carried out at 14,530× g for 5 min. Then, 100 μl of the supernatant were extracted from each microtube and transferred to each well of 96-well plate. Assessment of hemoglobin release was carried out by measuring the absorbance at 540 nm. 2.10 rAGAAN-acetic acid against chicken meat spoilage Antimicrobial efficacy of the rAGAAN and acetic acid combination was assessed using a methodology described by Ajingi et al. [25], with minor adjustments. In brief, fresh chicken meat was purchased from a local market and immediately transferred to the laboratory. Meat was divided into approximately 10-g specimens and washed thoroughly. Specimens were transferred into a laminar flow hood and 100 µl of 105 cfu of E. coli were divided to five separate locations. Sample was set for 1 h to promote appropriate attachment of the bacterial strains. Then, meat sample was submerged into 200-ml solution of rAGAAN/acetic acid for 1 h. Furthermore, sample was extracted, transferred into a plastic bag and incubated at 37 oC for 3 d. The chicken meat sample was transferred into a plastic bag with solution consisting of 0.1% peptone water. Sample was mechanically pulverized using stomacher to enhance liberation of the bacterial cells. Following the process of serial dilution, a 100 µl of sample were transferred onto an LB-agar plate. Number of colonies on the plate was counted at intervals of 0, 1, 2 and 3 d. Control group was administered with DW. 2.11 Statistical analysis Results were present as mean ±SD (standard deviation) of three replicates. Statistical distinction was assessed using one-way analysis of variance (ANOVA) with Duncan’s multiple-range test. Differences with p < 0.05 were regarded as statistically significant. Results and Discussion 3.1 Minimum inhibitory concentration The MICs of rAGAAN and organic acids against S. aureus and E. coli are present in Table 1. The MIC of rAGAAN against S. aureus and E. coli was assessed as 0.15 mg.ml-1. The organic acids inhibited proliferation of the pathogenic bacteria at various concentrations expressed as proportions (%). Acetic acid demonstrated inhibitory effects on the growth of S. aureus at 0.2% v v-1 and on the growth of pathogenic E. coli at 0.25% v v-1. Formic acid inhibited growth of S. aureus at 0.25% v v-1 and growth of E. coli at 0.2% v v-1. The findings for acetic acid were similar to those against eleven mastitis pathogens in dairy cows with MIC values ranging of 0.125–0.25% v v-1 [26]. Similarly, Fraise et al. [27] reported antimicrobial activity of acetic acid against Pseudomonas aeruginosa and S. aureus at 0.166 and 0.312% v v-1, respectively. Manuel et al. [28] detected that formic acid at a concentration of 0.06% v v-1 exhibited antimicrobial effects against E. coli. Variations in their effectiveness against the microorganisms might be attributed to their chemical compositions. Methyl group (CH3) in acetic acid donated electron density to O-H bond, resulting in increased difficulties in removing the hydrogen atom. Consequently, acetic acid was weaker than the formic acid. Weak acids included a higher ability to pass through bacterial membranes, compared to strong acids due to the balances between their ionized and non-ionized states. The non-ionized form could easily diffuse through hydrophobic membranes. As a result, they provided proton gradients needed for ATP synthesis to collapse. This occurred because free anions such as acetate in this situation combined with periplasmic protons that were pumped out by the electron transport chain. Then, anions transported the protons back across the membrane without F1Fo ATP synthase [29]. 3.2 Synergistic effects of rAGAAN with organic acids The inhibitory concentration index (FICI), demons-trating combined effects of rAGAAN and organic acids, is present in Table 2. The compound rAGAAN demonstrated synergistic effects against S. aureus and E. coli when combined with organic acids. Results showed that the synergistic effects were strongest when using acetic acid for the two bacterial strains, compared to when using formic acid. The FICI values for the combination of rAGAAN with acetic acid were assessed as 0.375 (p < 0.5) for S. aureus and E. coli. The FICI values for the combination of rAGAAN with formic acid were assessed as 0.375 for S. aureus and 0.5 for E. coli.         Results indicated that sub-MICs of the antimicrobials were needed to effectively terminate the bacterial growth. Combination of rAGAAN and acetic acid resulted in a 25% decrease in the concentration of each antimicrobial, compared to their MICs. Synergism can occur when two various antibacterial agents, each with non-overlapping mechanisms of action, are combined with each other [30]. Therefore, the authors suggest that the antimicrobial effects could be strengthened using synergistic effects of combined organic acid with rAGAAN. While the precise process; by which, combination of rAGAAN with organic acid created synergistic effects is still unknown, studies have demonstrated that the cell membrane of bacteria is a shared target for the antibacterial effects of various antimicrobial peptides. Additionally, these peptides include an affinity for bacterial cellular components, including DNA [31]. In contrast, it is suggested that organic acids can delay absorption of nutrients and disrupt flow of electrons, leading to decreases in ATP production [32]. This various mechanism of action enables swift eradication of bacteria. 3.3 Kinetics of inactivation Acetic acid was chosen for the study because it included stronger antimicrobial effects than that formic acid with rAGAAN did. Growth inhibition kinetics of rAGAAN, acetic acid and their combination on the logarithmic phase of the pathogenic bacteria are illustrated in Figure 1. When the peptide rAGAAN was mixed with acetic acid at the FIC, there was no noticeable alteration in OD for either of the bacterial strains during 5 h. This indicated that the bacterial growth was entirely suppressed. The combination demonstrated significant inhibitory effects, greater than that of the individual antimicrobial agent and control group. The combination exhibited the capacity to inhibit proliferation of S. aureus ATCC 6538 and E. coli ATCC 8739 at various concentrations within a few hours of exposure. Upon analyzing each treatment individually, it became clear that progressive decreases occured in OD measurements as time progressed. Nevertheless, use of rAGAAN with acetic acid led to further pronounced decreases in the turbidity level of the culture. 3.4 β-Galactosidase assay To clarify the mechanism; by which, the combination acted, membrane permeability assay was carried out. This experiment used E. coli that was cultured in media containing lactose broth, which stimulated the synthesis of β-galactosidase. The β-galactosidase is an endogenous enzyme synthesized by the lac operon in bacteria. Release of this enzyme depends on disruption of the cell membrane. Release of the β-galactosidase enzyme from the disrupted cytoplasmic membrane was detected within 10 min of incubation with rAGAAN alone. In addition, cell membrane was destabilized by a combination of rAGAAN with acetic acid at 1× FICI, 2× FICI and 3× FICI, as shown in Figure 2. Findings showed that the presence of rAGAAN, independently and in combination with acetic acid, could result in permeability of the cell membrane of E. coli. How-ever, acetic acid alone did not demonstrate effects on perme-ability of the membrane. Increasing OD measurements over time were directly linked to the rate of O-nitrophenol prod-uction from the breakdown of ONPG. The current results were similar to those of Yuan et al. [33], who observed increases in OD due to the degradation of ONPG when Larimichthys crocea myosin heavy chain protein-derived pepti

    Paenibacillus curdlanolyticus Strain B-6 Xylanolytic-Cellulolytic Enzyme System That Degrades Insoluble Polysaccharides

    No full text
    A facultatively anaerobic bacterium, Paenibacillus curdlanolyticus B-6, isolated from an anaerobic digester produces an extracellular xylanolytic-cellulolytic enzyme system containing xylanase, β-xylosidase, arabinofuranosidase, acetyl esterase, mannanase, carboxymethyl cellulase (CMCase), avicelase, cellobiohydrolase, β-glucosidase, amylase, and chitinase when grown on xylan under aerobic conditions. During growth on xylan, the bacterial cells were found to adhere to xylan from the early exponential growth phase to the late stationary growth phase. Scanning electron microscopic analysis revealed the adhesion of cells to xylan. The crude enzyme preparation was found to be capable of binding to insoluble xylan and Avicel. The xylanolytic-cellulolytic enzyme system efficiently hydrolyzed insoluble xylan, Avicel, and corn hulls to soluble sugars that were exclusively xylose and glucose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of a crude enzyme preparation exhibited at least 17 proteins, and zymograms revealed multiple xylanases and cellulases containing 12 xylanases and 9 CMCases. The cellulose-binding proteins, which are mainly in a multienzyme complex, were isolated from the crude enzyme preparation by affinity purification on cellulose. This showed nine proteins by SDS-PAGE and eight xylanases and six CMCases on zymograms. Sephacryl S-300 gel filtration showed that the cellulose-binding proteins consisted of two multienzyme complexes with molecular masses of 1,450 and 400 kDa. The results indicated that the xylanolytic-cellulolytic enzyme system of this bacterium exists as multienzyme complexes

    Symbiotic Behavior during Co-culturing of Clostridium thermocellum NKP-2 and Thermoanaerobacterium thermosaccharolyticum NOI-1 on Corn Hull

    No full text
    The symbiosis of co-culturing between Clostridium thermocellum NKP-2 and Thermoanaerobacterium thermosaccharolyticum NOI-1 is described. An efficient biomass-degrading enriched culture was isolated from soil that contained two different bacterial strains showing homology to C. thermocellum and T. thermosaccharolyticum. The enzymatic system produced from the isolated strains when cultivated individually on corn hulls demonstrated different cellulolytic and xylanolytic enzyme activities. Strain NKP-2 produced cellulose- and xylan-main chain cleaving enzymes such as carboxymethylcellulase (CMCase), avicelase, and xylanase as major enzymes, whereas strain NOI-1 produced primarily short- and side-chain cleaving enzymes such as cellobiohydrolase, β-glucosidase, β-xylosidase, acetyl esterase, and especially α-L-arabinofuranosidase. Enhancement of corn hull utilization, cell growth, and fermentation products (ethanol, butanol, acetic acid, butyric acid, H2, and CO2) was greatly increased during co-culturing compared with individual cultivation of both strains. The symbiotic behavior between both strains was one of mutualism, in which the synergistic degradation of corn hulls by co-action of cellulolytic and xylanolytic enzymes promoted hydrolysis of biomass for growth and fermented products

    Multifunctional Properties of Glycoside Hydrolase Family 43 from Paenibacillus curdlanolyticus Strain B-6 Including Exo-β-xylosidase, Endo-xylanase, and α-L-Arabinofuranosidase Activities

    No full text
    The glycoside hydrolase family 43 from Paenibacillus curdlanolyticus strain B-6 (GH43B6) exhibited multifunctional properties, including exo-β-xylosidase, endo-xylanase, and α-L-arabinofuranosidase enzymatic activities. GH43B6 released xylose as a hydrolysis product from the successive reduction of xylooligosaccharides as a result of exo-β-xylosidase activity. Moreover, GH43B6 also predominantly released xylose from low-substituted xylan derived from birchwood. However, when the highly substituted rye flour arabinoxylan was used as a substrate, exo-β-xylosidase activity changed to endo-xylanase activity, indicating that the enzymatic property of GH43B6 is influenced by the substituted side groups of xylan. For α-L-arabinofuranosidase, arabinose was released from short-chain substrates including p-nitrophenyl-α-L-arabinofuranoside and α-L-Araf-(1→2)-[α-L-Araf-(1→3)]-β-D-Xylp. This study reports the novel trifunctional properties of GH43B6 containing exo- and endo-activity together with xylanolytic debranching enzymatic activity, which increases its potential for application in lignocellulose-based biorefineries

    Anticancer and anti-angiogenic activities of mannooligosaccharides extracted from coconut meal on colorectal carcinoma cells in vitro

    No full text
    Colorectal carcinoma (CRC) is one of the most common malignancies, though there are no effective therapeutic regimens at present. This study aimed to investigate the inhibitory effects of mannooligosaccharides extracted from coconut meal (CMOSs) on the proliferation and migration of human colorectal cancer HCT116 cells in vitro. The results showed that CMOSs exhibited significant inhibitory activity against HCT116 cell proliferation in a concentration-dependent manner with less cytotoxic effects on the Vero normal cells. CMOSs displayed the ability to increase the activation of caspase-8, –9, and –3/7, as well as the generation of reactive oxygen species (ROS). Moreover, CMOSs suppressed HCT116 cell migration in vitro. Interestingly, treatment of human microvascular endothelial cells (HMVECs) with CMOSs resulted in the inhibition of cell proliferation, cell migration, and capillary-like tube formation, suggesting its anti-vascular angiogenesis. In summary, the results of this study indicate that CMOSs could be a valuable therapeutic candidate for CRC treatment

    A Novel D-Psicose 3-Epimerase from Halophilic, Anaerobic <i>Iocasia fonsfrigidae</i> and Its Application in Coconut Water

    No full text
    D-Psicose is a rare, low-calorie sugar that is found in limited quantities in national products. Recently, D-psicose has gained considerable attention due to its potential applications in the food, nutraceutical, and pharmaceutical industries. In this study, a novel D-psicose 3-epimerase (a group of ketose 3-epimerase) from an extremely halophilic, anaerobic bacterium, Iocasia fonsfrigidae strain SP3-1 (IfDPEase), was cloned, expressed in Escherichia coli, and characterized. Unlike other ketose 3-epimerase members, IfDPEase shows reversible epimerization only for D-fructose and D-psicose at the C-3 position but not for D-tagatose, most likely because the Gly218 and Cys6 at the substrate-binding subsites of IfDPEase, which are involved in interactions at the O-1 and O-6 positions of D-fructose, respectively, differ from those of other 3-epimerases. Under optimum conditions (5 µM IfDPEase, 1 mM Mn2+, 50 °C, and pH 7.5), 36.1% of D-psicose was obtained from 10 mg/mL D-fructose. The IfDPEase is highly active against D-fructose under NaCl concentrations of up to 500 mM, possibly due to the excessive negative charges of acidic amino acid residues (aspartic and glutamic acids), which are localized on the surface of the halophilic enzyme. These negative charges may protect the enzyme from Na+ ions from the environment and result in the lowest pI value compared to those of other 3-epimerase members. Moreover, without adjusting any ingredients, IfDPEase could improve coconut water quality by converting D-fructose into D-psicose with a yield of 26.8%. Therefore, IfDPEase is an attractive alternative to enhancing the quality of fructose-containing foods

    Clostridium manihotivorum sp. nov., a novel mesophilic anaerobic bacterium that produces cassava pulp-degrading enzymes

    No full text
    Background Cassava pulp is a promising starch-based biomasses, which consists of residual starch granules entrapped in plant cell wall containing non-starch polysaccharides, cellulose and hemicellulose. Strain CT4T, a novel mesophilic anaerobic bacterium isolated from soil collected from a cassava pulp landfill, has a strong ability to degrade polysaccharides in cassava pulp. This study explored a rarely described species within the genus Clostridium that possessed a group of cassava pulp-degrading enzymes. Methods A novel mesophilic anaerobic bacterium, the strain CT4T, was identified based on phylogenetic, genomic, phenotypic and chemotaxonomic analysis. The complete genome of the strain CT4T was obtained following whole-genome sequencing, assembly and annotation using both Illumina and Oxford Nanopore Technology (ONT) platforms. Results Analysis based on the 16S rRNA gene sequence indicated that strain CT4T is a species of genus Clostridium. Analysis of the whole-genome average amino acid identity (AAI) of strain CT4T and the other 665 closely related species of the genus Clostridium revealed a separated strain CT4T from the others. The results revealed that the genome consisted of a 6.3 Mb circular chromosome with 5,664 protein-coding sequences. Genome analysis result of strain CT4T revealed that it contained a set of genes encoding amylolytic-, hemicellulolytic-, cellulolytic- and pectinolytic enzymes. A comparative genomic analysis of strain CT4T with closely related species with available genomic information, C. amylolyticum SW408T, showed that strain CT4T contained more genes encoding cassava pulp-degrading enzymes, which comprised a complex mixture of amylolytic-, hemicellulolytic-, cellulolytic- and pectinolytic enzymes. This work presents the potential for saccharification of strain CT4T in the utilization of cassava pulp. Based on phylogenetic, genomic, phenotypic and chemotaxonomic data, we propose a novel species for which the name Clostridium manihotivorum sp. nov. is suggested, with the type strain CT4T (= TBRC 11758T = NBRC 114534T)

    Characterization of the Biomass Degrading Enzyme GuxA from Acidothermus cellulolyticus

    No full text
    Microbial conversion of biomass relies on a complex combination of enzyme systems promoting synergy to overcome biomass recalcitrance. Some thermophilic bacteria have been shown to exhibit particularly high levels of cellulolytic activity, making them of particular interest for biomass conversion. These bacteria use varying combinations of CAZymes that vary in complexity from a single catalytic domain to large multi-modular and multi-functional architectures to deconstruct biomass. Since the discovery of CelA from Caldicellulosiruptor bescii which was identified as one of the most active cellulase so far identified, the search for efficient multi-modular and multi-functional CAZymes has intensified. One of these candidates, GuxA (previously Acel_0615), was recently shown to exhibit synergy with other CAZymes in C. bescii, leading to a dramatic increase in growth on biomass when expressed in this host. GuxA is a multi-modular and multi-functional enzyme from Acidothermus cellulolyticus whose catalytic domains include a xylanase/endoglucanase GH12 and an exoglucanase GH6, representing a unique combination of these two glycoside hydrolase families in a single CAZyme. These attributes make GuxA of particular interest as a potential candidate for thermophilic industrial enzyme preparations. Here, we present a more complete characterization of GuxA to understand the mechanism of its activity and substrate specificity. In addition, we demonstrate that GuxA exhibits high levels of synergism with E1, a companion endoglucanase from A. cellulolyticus. We also present a crystal structure of one of the GuxA domains and dissect the structural features that might contribute to its thermotolerance
    corecore