40 research outputs found
Subsequent cultivation of chondrocytes and mesenchymal stem cells on the devitalised tissue
The regeneration of cartilage lesions still represents a major challenge.
Cartilage has a tissue-specific architecture, complicating recreation by
synthetic biomaterials. A novel approach for reconstruction is the use of
devitalised cartilage. Treatment with high hydrostatic pressure (HHP) achieves
devitalisation while biomechanical properties are remained. Therefore, in the
present study, cartilage was devitalised using HHP treatment and the potential
for revitalisation with chondrocytes and mesenchymal stem cells (MSCs) was
investigated. The devitalisation of cartilage was performed by application of
480 MPa over 10 minutes. Effective cellular inactivation was demonstrated by
the trypan blue exclusion test and DNA quantification. Histology and electron
microscopy examinations showed undamaged cartilage structure after HHP
treatment. For revitalisation chondrocytes and MSCs were cultured on
devitalised cartilage without supplementation of chondrogenic growth factors.
Both chondrocytes and MSCs significantly increased expression of cartilage-
specific genes. ECM stainings showed neocartilage-like structure with positive
AZAN staining as well as collagen type II and aggrecan deposition after three
weeks of cultivation. Our results showed that HHP treatment caused
devitalisation of cartilage tissue. ECM proteins were not influenced, thus,
providing a scaffold for chondrogenic differentiation of MSCs and
chondrocytes. Therefore, using HHP-treated tissue might be a promising
approach for cartilage repair
Sexually dimorphic tibia shape is linked to natural osteoarthritis in STR/Ort mice
Human osteoarthritis (OA) is detected only at late stages. Male STR/Ort mice develop knee OA spontaneously with known longitudinal trajectory, offering scope to identify OA predisposing factors. We exploit the lack of overt OA in female STR/Ort and in both sexes of parental, control CBA mice to explore whether early divergence in tibial bone mass or shape are linked to emergent OA
Theoretical study of peculiarities of unstable longitudinal shear crack growth in sub-Rayleigh and supershear regimes
In the paper we present the results of the theoretical study of some fundamental aspects of mode II crack propagation in conventional sub-Rayleigh regime and transition to intersonic regime. It is shown that development of a sub-Rayleigh shear crack is determined in many respects by elastic vortex traveling ahead of the crack tip at a shear wave velocity. Formation of such a vortex helps to better understand the well-known phenomenon of acceleration of a shear crack towards the longitudinal wave velocity. Simulation results have shown that due to self-similarity of shear crack propagation the conditions of sub-Rayleigh to intersonic transition depend on dimensionless material and crack parameters. Two key dimensionless parameters are proposed
Stable sulforaphane protects against gait anomalies and modifies bone microarchitecture in the spontaneous STR/Ort model of osteoarthritis
Osteoarthritis (OA), affecting joints and bone, causes physical gait disability with huge socio-economic burden; treatment remains palliative. Roles for antioxidants in protecting against such chronic disorders have been examined previously. Sulforaphane is a naturally occurring antioxidant. Herein, we explore whether SFX-01®, a stable synthetic form of sulforaphane, modifies gait, bone architecture and slows/reverses articular cartilage destruction in a spontaneous OA model in STR/Ort mice. Sixteen mice (n = 8/group) were orally treated for 3 months with either 100 mg/kg SFX-01® or vehicle. Gait was recorded, tibiae were microCT scanned and analysed. OA lesion severity was graded histologically. The effect of SFX-01® on bone turnover markers in vivo was complemented by in vitro bone formation and resorption assays. Analysis revealed development of OA-related gait asymmetry in vehicle-treated STR/Ort mice, which did not emerge in SFX-01®-treated mice. We found significant improvements in trabecular and cortical bone. Despite these marked improvements, we found that histologically-graded OA severity in articular cartilage was unmodified in treated mice. These changes are also reflected in anabolic and anti-catabolic actions of SFX-01® treatment as reflected by alteration in serum markers as well as changes in primary osteoblast and osteoclast-like cells in vitro. We report that SFX-01® improves bone microarchitecture in vivo, produces corresponding changes in bone cell behaviour in vitro and leads to greater symmetry in gait, without marked effects on cartilage lesion severity in STR/Ort osteoarthritic mice. Our findings support both osteotrophic roles and novel beneficial gait effects for SFX-01® in this model of spontaneous OA
Europium induced deep levels In hexagonal silicon carbide
Silicon carbide SiC was investigated for deep band gap states of europium by means of deep level transient spectroscopy DLTS . The knowledge of the properties of optoelectrically active impurities or defects is essential for a detailed understanding of the enegy transfer process resulting in the observable excitations [1]. SiC samples of the polytypes 4H as well as 6H are ion implanted by different europium isotopes in order to obtain a chemical identification of the characterized levels. Here the concentration sensitivity of the DLTS is applied to observe the elemental transmutation of the incorporated radioactive tracer atoms 146Eu t1 2 4.51d and 147Eu t1 2 24.6d . DLTS on samples implanted with stable Eu ions 153Eu was carried out for comparison and manifestation of the results. From these studies 5 Eu related deep band gap levels are established in 4H SiC two levels at Ev 0.86 2 eV and Ec 0.47 2 eV, and in 6H SiC three levels at Ev 0.88 2 eV, Ec 0.29 2 eV and Ec 0.67 2 eV
A Deep Erbium related Bandgap State in 4H Silicon Carbide
In this work Deep Level Transient Spectroscopy DLTS is used to identify bandgap states of Er in Silicon Carbide SiC . The samples were doped with Er by ion implantation followed by an annealing procedure. One donor like implantation induced bandgap state located at E V 0.75 2 eV above the valence band edge is assigned to Er in the SiC crystals. A definite chemical correlation of this bandgap state to Er is achieved by using the radioactive isotope 160 Er as tracer. The decreasing concentration of this isotope during the nuclear transmutation to 160 Dy allows a unique attribution of the bandgap states induced by the