44 research outputs found

    p38MAPK and Chemotherapy: We always need to hear both Sides of the Story

    Get PDF
    The p38MAPK signaling pathway was initially described as a stress response mechanism. In fact, during previous decades, it was considered a pathway with little interest in oncology especially in comparison with other MAPKs such as ERK1/2, known to be target of oncogenes like Ras. However, its involvement in apoptotic cell death phenomena makes this signaling pathway more attractive for many cancer research laboratories. This apoptotic role allows to establish a link between p38MAPK and regular chemotherapeutic agents such as Cisplatin or base analogs (Cytarabine, Gemcitabine or 5-Fluorouracil) which are currently used in hospitals across the world. In fact, and more recently, p38MAPK has also been connected with targeted therapies like tyrosine kinase inhibitors (vg. Imatinib, Sorafenib) and, to a lesser extent, with monoclonal antibodies. In addition, the oncogenic or tumor suppressor potential of this signaling pathway has aroused the interest of the scientific community in evaluating p38MAPK as a novel target for cancer therapy. In this review, we will summarize the role of p38MAPK in chemotherapy as well as the potential that p38MAPK inhibition can bring to cancer therapy. All the evidences suggest that p38MAPK could be a double-edged sword and that the search for the most appropriate candidate patients, depending on their pathology and treatment, will lead to a more rational use of this new therapeutic tool

    ERK5 Is a Major Determinant of Chemical Sarcomagenesis: Implications in Human Pathology

    Get PDF
    ERK5; Leiomyosarcoma; Soft tissue sarcomaERK5; Leiomiosarcoma; Sarcoma de tejido blandoERK5; Leiomiosarcoma; Sarcoma dels teixits tousSarcomas are a heterogeneous group of tumors in which the role of ERK5 is poorly studied. To clarify the role of this MAPK in sarcomatous pathology, we used a murine 3-methyl-cholanthrene (3MC)-induced sarcoma model. Our data show that 3MC induces pleomorphic sarcomas with muscle differentiation, showing an increased expression of ERK5. Indeed, this upregulation was also observed in human sarcomas of muscular origin, such as leiomyosarcoma or rhabdomyosarcoma. Moreover, in cell lines derived from these 3MC-induced tumors, abrogation of Mapk7 expression by using specific shRNAs decreased in vitro growth and colony-forming capacity and led to a marked loss of tumor growth in vivo. In fact, transcriptomic profiling in ERK5 abrogated cell lines by RNAseq showed a deregulated gene expression pattern for key biological processes such as angiogenesis, migration, motility, etc., correlating with a better prognostic in human pathology. Finally, among the various differentially expressed genes, Klf2 is a key mediator of the biological effects of ERK5 as indicated by its specific interference, demonstrating that the ERK5–KLF2 axis is an important determinant of sarcoma biology that should be further studied in human pathology.This work has been supported with Grant RTI2018-094093-B-I00 funded by MCIN/AEI/10.13039/501100011033, “ERDF A way of making Europe” to RSP. Also supported with funds from Fundación Leticia Castillejo Castillo, Roche España and ACEPAIN to RSP and MJRH. RSP and MJRH’s Research Institute and the work carried out in their laboratory, received partial support from the European Community through the FEDER. JJ and EAL hold a predoctoral research contract cofounded by the European Social Fund and UCLM. OR holds a contract for accessing the Spanish System of Science, Technology, and Innovation (SECTI) funded by the University of Castilla-La Mancha (UCLM) and received partial support from the European Social Fund (FSE) through its Operative Program for Castilla-La Mancha (2007–2013)

    Structural connectivity and subcellular changes after antidepressant doses of ketamine and Ro 25-6981 in the rat: an MRI and immuno-labeling study

    Get PDF
    Ketamine has rapid and robust antidepressant effects. However, unwanted psychotomimetic effects limit its widespread use. Hence, several studies examined whether GluN2B-subunit selective NMDA antagonists would exhibit a better therapeutic profile. Although preclinical work has revealed some of the mechanisms of action of ketamine at cellular and molecular levels, the impact on brain circuitry is poorly understood. Several neuroimaging studies have examined the functional changes in the brain induced by acute administration of ketamine and Ro 25-6981 (a GluN2B-subunit selective antagonist), but the changes in the microstructure of gray and white matter have received less attention. Here, the effects of ketamine and Ro 25-6981 on gray and white matter integrity in male Sprague-Dawley rats were determined using diffusion-weighted magnetic resonance imaging (DWI). In addition, DWI-based structural brain networks were estimated and connectivity metrics were computed at the regional level. Immunohistochemical analyses were also performed to determine whether changes in myelin basic protein (MBP) and neurofilament heavy-chain protein (NF200) may underlie connectivity changes. In general, ketamine and Ro 25-6981 showed some opposite structural alterations, but both compounds coincided only in increasing the fractional anisotropy in infralimbic prefrontal cortex and dorsal raphe nucleus. These changes were associated with increments of NF200 in deep layers of the infralimbic cortex (together with increased MBP) and the dorsal raphe nucleus. Our results suggest that the synthesis of NF200 and MBP may contribute to the formation of new dendritic spines and myelination, respectively. We also suggest that the increase of fractional anisotropy of the infralimbic and dorsal raphe nucleus areas could represent a biomarker of a rapid antidepressant response.Funding: Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was supported by grants from the Instituto de Salud Carlos III, Subdirección General de Evaluación y Fomento de la Investigación (PI13/00038, PI16/00217 and PI19/00170 to A.A.) that were co-funded by the European Regional Development Fund (‘A way to build Europe’); Generalitat Valenciana, Conselleria d’ Educació, Investigació, Cultura i Esport (GV/2018/049 to A.B-S.); Ministerio de Ciencia, Innovación y Universidades (RTI2018-097534-B-I00 to F.P.-C.). Funding from the Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III is also acknowledged

    MKP1 mediates chemosensitizer effects of E1a in response to cisplatin in non-small cell lung carcinoma cells

    Get PDF
    The adenoviral gene E1a is known to enhance the antitumor effect of cisplatin, one of the cornerstones of the current cancer chemotherapy. Here we study the molecular basis of E1a mediated sensitivity to cisplatin in an experimental model of Non-small cell lung cancer. Our data show how E1a blocks the induction of autophagy triggered by cisplatin and promotes the apoptotic response in resistant cells. Interestingly, at the molecular level, we present evidences showing how the phosphatase MKP1 is a major determinant of cisplatin sensitivity and its upregulation is strictly required for the induction of chemosensitivity mediated by E1a. Indeed, E1a is almost unable to promote sensitivity in H460, in which the high expression of MKP1 remains unaffected by E1a. However, in resistant cell as H1299, H23 or H661, which display low levels of MKP1, E1a expression promotes a dramatic increase in the amount of MKP1 correlating with cisplatin sensitivity. Furthermore, effective knock down of MKP1 in H1299 E1a expressing cells restores resistance to a similar extent than parental cells. stores resistance to a similar extent than parental cells. In summary, the present work reinforce the critical role of MKP1 in the cellular response to cisplatin highlighting the importance of this phosphatase in future gene therapy approach based on E1a gene

    ERK5 signalling pathway is a novel target of sorafenib: Implication in EGF biology

    Get PDF
    © 2021 The Authors.Sorafenib is a multikinase inhibitor widely used in cancer therapy with an antitumour effect related to biological processes as proliferation, migration or invasion, among others. Initially designed as a Raf inhibitor, Sorafenib was later shown to also block key molecules in tumour progression such as VEGFR and PDGFR. In addition, sorafenib has been connected with key signalling pathways in cancer such as EGFR/EGF. However, no definitive clue about the molecular mechanism linking sorafenib and EGF signalling pathway has been established so far. Our data in HeLa, U2OS, A549 and HEK293T cells, based on in silico, chemical and genetic approaches demonstrate that the MEK5/ERK5 signalling pathway is a novel target of sorafenib. In addition, our data show how sorafenib is able to block MEK5-dependent phosphorylation of ERK5 in the Ser218/Tyr220, affecting the transcriptional activation associated with ERK5. Moreover, we demonstrate that some of the effects of this kinase inhibitor onto EGF biological responses, such as progression through cell cycle or migration, are mediated through the effect exerted onto ERK5 signalling pathway. Therefore, our observations describe a novel target of sorafenib, the ERK5 signalling pathway, and establish new mechanistic insights for the antitumour effect of this multikinase inhibitor.This work was supported by grants from Fundación Leticia Castillejo Castillo, Ministerio de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) (RTI2018-094093-B-I00) to RSP and MJRH. OR holds a contract for accessing the Spanish System of Science, Technology, and Innovation (SECTI) funded by the University of Castilla-La Mancha (UCLM) and received partial support from the European Social Fund (FSE) through its Operative Program for Castilla-La Mancha (2007–2013). RSP and MJRH's Research Institute, and the work carried out in their laboratory, received partial support from the European Community through the FEDER. RPS and EAL hold a research predoctoral contract cofounded by the European Social Fund and UCLM. The Spanish Ministry of Economy and Competitiveness (MINECO, Project RTI2018-096724-B-C21) and the Generalitat Valenciana (PROMETEO/2016/006) support work in the Encinar´s laboratory. Authors are grateful to Dr.G- Ferrer Mayorga for her assistance in the transwell assays, and to the ‘Centro de Computación Científica’ (CCC-UAM) for letting us to take advantage of the computer cluster Cibeles (https://www.ccc.uam.es/) and for providing computing facilities

    Exploiting the potential of autophagy in cisplatin therapy: a new strategy to overcome resistance

    Get PDF
    Resistance to cisplatin is a major challenge in the current cancer therapy. In order to explore new therapeutic strategies to cisplatin resistance, we evaluated, in a model of lung cancer (H1299 and H460 cell lines), the nature of the pathways leading to cell death. We observed that H1299 displayed a natural resistance to cisplatin due to an inability to trigger an apoptotic response that correlates with the induction of autophagy. However, pharmacological and genetic approaches showed how autophagy was a mechanism associated to cell death rather than to resistance. Indeed, pro-autophagic stimuli such as mTOR or Akt inhibition mediate cell death in both cell lines to a similar extent. We next evaluated the response to a novel platinum compound, monoplatin, able to promote cell death in an exclusive autophagy-dependent manner. In this case, no differences were observed between both cell lines. Furthermore, in response to monoplatin, two molecular hallmarks of cisplatin response (p53 and MAPKs) were not implicated, indicating the ability of this pro-autophagic compound to overcome cisplatin resistance. In summary, our data highlight how induction of autophagy could be used in cisplatin resistant tumours and an alternative treatment for p53 mutated patient in a synthetic lethally approach

    Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance

    Full text link
    Resistance to cisplatin is a major challenge in the current cancer therapy. In order to explore new therapeutic strategies to cisplatin resistance, we evaluated, in a model of lung cancer (H1299 and H460 cell lines), the nature of the pathways leading to cell death. We observed that H1299 displayed a natural resistance to cisplatin due to an inability to trigger an apoptotic response that correlates with the induction of autophagy. However, pharmacological and genetic approaches showed how autophagy was a mechanism associated to cell death rather than to resistance. Indeed, pro-autophagic stimuli such as mTOR or Akt inhibition mediate cell death in both cell lines to a similar extent. We next evaluated the response to a novel platinum compound, monoplatin, able to promote cell death in an exclusive autophagy-dependent manner. In this case, no differences were observed between both cell lines. Furthermore, in response to monoplatin, two molecular hallmarks of cisplatin response (p53 and MAPKs) were not implicated, indicating the ability of this pro-autophagic compound to overcome cisplatin resistance. In summary, our data highlight how induction of autophagy could be used in cisplatin resistant tumours and an alternative treatment for p53 mutated patient in a synthetic lethally approach.This work was supported by grants from Fundación Leticia Castillejo Castillo and Ministerio de Economía y Competitividad (grant SAF2012-30862 to RSP and grant CTQ2011-24434 to FAJ). RSP Research Institute, and the work carried out in his laboratory receive support from the European Community through the regional development funding program (FEDER). JGC received funding from the Regional Ministry of Education and Science of Castilla–La Mancha (FPI-JCCM) and from Fundación Leticia Castillejo Castillo. MCC and RSP have a contract from the INCRECYT progra

    Blockage of autophagic ux is associated with lymphocytosis and higher percentage of tumoral cells in chronic lymphocytic leukemia of B-cells

    Get PDF
    Póster presentado al 42nd Congress of the Spanish Society of Biochemistry and Molecular Biology (SEBBM), celebrado en Madrid del 16 al 19 de julio de 2019.[Objective] Autophagy has lately emerged as an important biological process with implications in several hematological pathologies. Recently, a growing body of evidence supports a putative role of autophagy in chronic lymphocytic leukemia, however no definitive clue has been established so far. To elucidate this issue, we have developed a pilot study to measure autophagic flux in peripheral blood mononuclear cells from chronic lymphocytic leukemia patients, and explored its correlation with classical clinical/analytical parameters. [Methods/Patients] Thirty-three chronic lymphocytic leukemia patients participated in the study. Autophagic flux in peripheral blood mononuclear cells was determined by western blot measuring the levels of the proteins p62 and lipidated LC3. Moreover, p62 mRNA levels were studied by RT-qPCR. [Results] Lymphocytosis and the percentage of tumoral lymphocytes in chronic lymphocityc leukemia patients statistically correlates with a blocked autophagic flux. [Conclusion] Alterations in autophagic flux could play an important role in the physiopathology of chronic lymphocytic leukemia.Fundación Leticia Castillejo Castillo, Ministerio de Economía y Competitividad. Sociedad Castellano Manchega de Hematología y Hemoterapia. RSP and MJRH Research Institutes, and the work carried out in their laboratories received support from the European Community through the Regional Development Funding Program (FEDER).Peer reviewe

    ERK5 Is a Major Determinant of Chemical Sarcomagenesis : Implications in Human Pathology

    Get PDF
    Sarcoma is a heterogeneous group of tumors poorly studied with few therapeutic opportunities. Interestingly, the role of MAPKs still remains unclear in sarcomatous pathology. Here, we describe for the first time the critical role of ERK5 in the biology of soft tissue sarcoma by using in vitro and in vivo approaches in a murine experimental model of chemical sarcomagenesis. Indeed, our observations were extrapolated to a short series of human leiomyosarcoma and rhabdomyosarcomas. Furthermore, transcriptome analysis allows us to demonstrate the critical role of KLF2 in the biological effects of ERK5. Therefore, the data presented here open new windows in the diagnosis and therapy of soft tissue sarcomas. Sarcomas are a heterogeneous group of tumors in which the role of ERK5 is poorly studied. To clarify the role of this MAPK in sarcomatous pathology, we used a murine 3-methyl-cholanthrene (3MC)-induced sarcoma model. Our data show that 3MC induces pleomorphic sarcomas with muscle differentiation, showing an increased expression of ERK5. Indeed, this upregulation was also observed in human sarcomas of muscular origin, such as leiomyosarcoma or rhabdomyosarcoma. Moreover, in cell lines derived from these 3MC-induced tumors, abrogation of Mapk7 expression by using specific shRNAs decreased in vitro growth and colony-forming capacity and led to a marked loss of tumor growth in vivo. In fact, transcriptomic profiling in ERK5 abrogated cell lines by RNAseq showed a deregulated gene expression pattern for key biological processes such as angiogenesis, migration, motility, etc., correlating with a better prognostic in human pathology. Finally, among the various differentially expressed genes, Klf2 is a key mediator of the biological effects of ERK5 as indicated by its specific interference, demonstrating that the ERK5-KLF2 axis is an important determinant of sarcoma biology that should be further studied in human pathology

    ERK5 Is a major determinant of chemical sarcomagenesis: implications in human pathology

    Get PDF
    Sarcomas are a heterogeneous group of tumors in which the role of ERK5 is poorly studied. To clarify the role of this MAPK in sarcomatous pathology, we used a murine 3-methyl-cholanthrene (3MC)-induced sarcoma model. Our data show that 3MC induces pleomorphic sarcomas with muscle differentiation, showing an increased expression of ERK5. Indeed, this upregulation was also observed in human sarcomas of muscular origin, such as leiomyosarcoma or rhabdomyosarcoma. Moreover, in cell lines derived from these 3MC-induced tumors, abrogation of Mapk7 expression by using specific shRNAs decreased in vitro growth and colony-forming capacity and led to a marked loss of tumor growth in vivo. In fact, transcriptomic profiling in ERK5 abrogated cell lines by RNAseq showed a deregulated gene expression pattern for key biological processes such as angiogenesis, migration, motility, etc., correlating with a better prognostic in human pathology. Finally, among the various differentially expressed genes, Klf2 is a key mediator of the biological effects of ERK5 as indicated by its specific interference, demonstrating that the ERK5–KLF2 axis is an important determinant of sarcoma biology that should be further studied in human pathology.This work has been supported with Grant RTI2018-094093-B-I00 funded by MCIN/AEI/10.13039/501100011033, “ERDF A way of making Europe” to RSP. Also supported with funds from Fundación Leticia Castillejo Castillo, Roche España and ACEPAIN to RSP and MJRH. RSP and MJRH’s Research Institute and the work carried out in their laboratory, received partial support from the European Community through the FEDER. JJ and EAL hold a predoctoral research contract cofounded by the European Social Fund and UCLM. OR holds a contract for accessing the Spanish System of Science, Technology, and Innovation (SECTI) funded by the University of Castilla-La Mancha (UCLM) and received partial support from the European Social Fund (FSE) through its Operative Program for Castilla-La Mancha (2007–2013)
    corecore