32 research outputs found
β-Amyloid Fibrils Activate the C1 Complex of Complement Under Physiological Conditions: Evidence for a Binding Site for Aβ on the C1q Globular Regions
Role of C1q in Efferocytosis and Self-Tolerance — Links With Autoimmunity
International audienc
Calreticulin Release at an Early Stage of Death Modulates the Clearance by Macrophages of Apoptotic Cells
International audienceCalreticulin (CRT) is a well-known "eat-me" signal harbored by dying cells participating in their recognition by phagocytes. CRT is also recognized to deeply impact the immune response to altered self-cells. In this study, we focus on the role of the newly exposed CRT following cell death induction. We show that if CRT increases at the outer face of the plasma membrane and is well recognized by C1q even when phosphatidylserine is not yet detected, CRT is also released in the surrounding milieu and is able to interact with phagocytes. We observed that exogenous CRT is endocytosed by THP1 macrophages through macropinocytosis and that internalization is associated with a particular phenotype characterized by an increase of cell spreading and migration, an upregulation of CD14, an increase of interleukin-8 release, and a decrease of early apoptotic cell uptake. Importantly, CRT-induced pro-inflammatory phenotype was confirmed on human monocytes-derived macrophages by the overexpression of CD40 and CD274, and we found that monocyte-derived macrophages exposed to CRT display a peculiar polarization notably associated with a downregulation of the histocompatibility complex of class II molecules hampering its description through the classical M1/M2 dichotomy. Altogether our results highlight the role of soluble CRT with strong possible consequences on the macrophage-mediated immune response to dying cell
Proteinase 3 Interferes With C1q-Mediated Clearance of Apoptotic Cells
International audienceProteinase 3 (PR3) is the autoantigen in granulomatosis with polyangiitis, an autoimmune necrotizing vasculitis associated with anti-neutrophil cytoplasmic antibodies (ANCAs). Moreover, PR3 is a serine protease whose membrane expression can potentiate inflammatory diseases such as ANCA-associated vasculitis and rheumatoid arthritis. During apoptosis, PR3 is co-externalized with phosphatidylserine (PS) and is known to modulate the clearance of apoptotic cells through a calreticulin (CRT)-dependent mechanism. The complement protein C1q is one mediator of efferocytosis, the clearance of altered self-cells, particularly apoptotic cells. Since PR3 and C1q are both involved in the clearance of apoptotic cells and immune response modulation and share certain common ligands (i.e., CRT and PS), we examined their possible interaction. We demonstrated that C1q binding was increased on apoptotic rat basophilic leukemia (RBL) cells that expressed PR3, and we demonstrated the direct interaction between purified C1q and PR3 molecules as shown by surface plasmon resonance. To better understand the functional consequence of this partnership, we tested C1q-dependent phagocytosis of the RBL cell line expressing PR3 and showed that PR3 impaired C1q enhancement of apoptotic cell uptake. These findings shed new light on the respective roles of C1q and PR3 in the elimination of apoptotic cells and suggest a novel potential axis to explore in autoimmune diseases characterized by a defect in apoptotic cell clearance and in the resolution of inflammation
Relative contribution of c1q and apoptotic cell-surface calreticulin to macrophage phagocytosis.
International audienceC1q has been shown to recognize apoptotic cells, to enhance their uptake and to modulate cytokine release by phagocytes and thus promote immune tolerance. Surface-exposed calreticulin (CRT), known as a C1q receptor, is also considered to be an early eat-me signal that enhances the phagocytosis of apoptotic cells and is capable of eliciting an immunogenic response. However, the molecular mechanisms that trigger these functions are not clear. We hypothesized that CRT and C1q might act together in these processes. We first showed, by means of fluorescence resonance energy transfer (FRET), that CRT interacts with the C1q globular region at the surface of early apoptotic cells. Next, we pointed out that knockdown of CRT on early apoptotic HeLa cells impairs the enhancement effect of C1q on their uptake by THP-1 monocyte-derived macrophages. Furthermore, a deficiency of CRT induces contrasting effects on cytokine release by THP-1 macrophages, increasing interleukin (IL)-6 and monocyte chemotactic protein 1/CCL2 and decreasing IL-8. Remarkably, these effects were greatly reduced when apoptotic cells were opsonized by C1q, which counterbalanced the effect of the CRT deficiency. These results demonstrate that CRT-C1q interaction is involved in the C1q bridging function and they highlight the particular ability of C1q to control the phagocyte inflammatory status, i.e. by integrating the molecular changes that could occur at the surface of dying cells
Nanoscale imaging of CD47 informs how plasma membrane modifications shape apoptotic cell recognition
International audienceCD47 recognized by its macrophage receptor SIRPα serves as a “don’t eat-me” signal protecting viable cells from phagocytosis. How this is abrogated by apoptosis-induced changes in the plasma membrane, concomitantly with exposure of phosphatidylserine and calreticulin “eat-me“ signals, is not well understood. Using STORM imaging and single-particle tracking, we interrogate how the distribution of these molecules on the cell surface correlates with plasma membrane alteration, SIRPα binding, and cell engulfment by macrophages. Apoptosis induces calreticulin clustering into blebs and CD47 mobility. Modulation of integrin affinity impacts CD47 mobility on the plasma membrane but not the SIRPα binding, whereas CD47/SIRPα interaction is suppressed by cholesterol destabilization. SIRPα no longer recognizes CD47 localized on apoptotic blebs. Overall, the data suggest that disorganization of the lipid bilayer at the plasma membrane, by inducing inaccessibility of CD47 possibly due to a conformational change, is central to the phagocytosis process
CD91 interacts with mannan-binding lectin (MBL) through the MBL-associated serine protease-binding site
CD91 plays an important role in the scavenging of apoptotic material, possibly through binding to soluble pattern-recognition molecules. In this study, we investigated the interaction of CD91 with mannan-binding lectin (MBL), ficolins and lung surfactant proteins. Both MBL and L-ficolin were found to bind CD91. The MBL-CD91 interaction was time- and concentration-dependent and could be inhibited by known ligands of CD91. MBL-associated serine protease 3 (MASP-3) also inhibited binding between MBL and CD91, suggesting that the site of interaction is located at or near the MASP-MBL interaction site. This was confirmed by using MBL mutants deficient for MASP binding that were unable to interact with CD91. These findings demonstrate that MBL and L-ficolin interact with CD91, strongly suggesting that they have the potential to function as soluble recognition molecules for scavenging microbial and apoptotic material by CD91. Structured digital abstract • MINT-8040679, MINT-8040706: MBL (uniprotkb: P11226) binds (MI:0407) to CD91 (uniprotkb: Q07954) by enzyme linked immunosorbent assay (MI:0411) • MINT-8040690: L-ficolin (uniprotkb: Q15485) binds (MI:0407) to CD91 (uniprotkb: Q07954) by enzyme linked immunosorbent assay (MI:0411) • MINT-8040663: C1q B (uniprotkb: P02746), C1q C (uniprotkb: P02747), C1q A (uniprotkb: P02745) and CD91 (uniprotkb: Q07954) physically interact (MI:0915) by enzyme linked immunosorbent assay (MI:0411) • MINT-8040821, MINT-8040869, MINT-8040928: CD91 (uniprotkb: Q07954) binds (MI:0407) to MBL (uniprotkb: P11226) by surface plasmon resonance (MI:0107) • MINT-8040880: CD91 (uniprotkb: Q07954) binds (MI:0407) to L-ficolin (uniprotkb: Q15485) by surface plasmon resonance (MI:0107)
Relative Contribution of C1q and Apoptotic Cell-Surface Calreticulin to Macrophage Phagocytosis
C1q has been shown to recognize apoptotic cells, to enhance their uptake and to modulate cytokine release by phagocytes and thus promote immune tolerance. Surface-exposed calreticulin (CRT), known as a C1q receptor, is also considered to be an early eat-me signal that enhances the phagocytosis of apoptotic cells and is capable of eliciting an immunogenic response. However, the molecular mechanisms that trigger these functions are not clear. We hypothesized that CRT and C1q might act together in these processes. We first showed, by means of fluorescence resonance energy transfer (FRET), that CRT interacts with the C1q globular region at the surface of early apoptotic cells. Next, we pointed out that knockdown of CRT on early apoptotic HeLa cells impairs the enhancement effect of C1q on their uptake by THP-1 monocyte-derived macrophages. Furthermore, a deficiency of CRT induces contrasting effects on cytokine release by THP-1 macrophages, increasing interleukin (IL)-6 and monocyte chemotactic protein 1/CCL2 and decreasing IL-8. Remarkably, these effects were greatly reduced when apoptotic cells were opsonized by C1q, which counterbalanced the effect of the CRT deficiency. These results demonstrate that CRT-C1q interaction is involved in the C1q bridging function and they highlight the particular ability of C1q to control the phagocyte inflammatory status, i.e. by integrating the molecular changes that could occur at the surface of dying cells.</jats:p
Nanoscale imaging of CD47 informs how plasma membrane modifications shape apoptotic cell recognition
AbstractCD47 recognized by its macrophage receptor SIRPα serves as a “don’t eat-me” signal protecting viable cells from phagocytosis. How this is abrogated by apoptosis-induced changes in the plasma membrane, concomitantly with exposure of phosphatidylserine and calreticulin “eat-me“ signals, is not well understood. Using STORM imaging and single-particle tracking, we interrogate how the distribution of these molecules on the cell surface correlates with plasma membrane alteration, SIRPα binding, and cell engulfment by macrophages. Apoptosis induces calreticulin clustering into blebs and CD47 mobility. Modulation of integrin affinity impacts CD47 mobility on the plasma membrane but not the SIRPα binding, whereas CD47/SIRPα interaction is suppressed by cholesterol destabilization. SIRPα no longer recognizes CD47 localized on apoptotic blebs. Overall, the data suggest that disorganization of the lipid bilayer at the plasma membrane, by inducing inaccessibility of CD47 possibly due to a conformational change, is central to the phagocytosis process.</jats:p
Molecular and Cellular Interactions of Scavenger Receptor SR-F1 With Complement C1q Provide Insights Into Its Role in the Clearance of Apoptotic Cells
International audienceThe scavenger receptor SR-F1 binds to and mediates the internalization of a wide range of ligands, and is involved in several immunological processes. We produced recombinant SR-F1 ectodomain and fragments deleted from the last 2 or 5 C-terminal epidermal growth factor-like modules and investigated their role in the binding of acetylated low density lipoprotein (AcLDL), complement C1q, and calreticulin (CRT). C1q measured affinity was in the 100 nM range and C1q interaction occurs via its collagen-like region. We identified two different binding regions on SR-F1: the N-terminal moiety interacts with C1q and CRT whereas the C-terminal moiety binds AcLDL. The role of SR-F1 N-linked glycans was also tested by mutating each of the three glycosylated asparagines. The three mutants retained binding activities for both AcLDL and C1q. A stable THP-1 cell line overexpressing SR-F1 was generated and C1q was shown to bind more strongly to the surface of SR-F1 overexpressing macrophages, with C1q/SR-F1 colocalization observed in some membrane areas. We also observed a higher level of CRT internalization for THP-1 SR-F1 cells. Increasing SR-F1 negatively modulated the uptake of apoptotic cells. Indeed, THP-1 cells overexpressing SR-F1 displayed a lower phagocytic capacity as compared with mock-transfected cells, which could be partially restored by addition of C1q in the extracellular milieu. Our data shed some light on the role of SR-F1 in efferocytosis, through its capacity to bind C1q and CRT, two proteins involved in this process
