15,441 research outputs found

    Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

    Full text link
    People detection in single 2D images has improved greatly in recent years. However, comparatively little of this progress has percolated into multi-camera multi-people tracking algorithms, whose performance still degrades severely when scenes become very crowded. In this work, we introduce a new architecture that combines Convolutional Neural Nets and Conditional Random Fields to explicitly model those ambiguities. One of its key ingredients are high-order CRF terms that model potential occlusions and give our approach its robustness even when many people are present. Our model is trained end-to-end and we show that it outperforms several state-of-art algorithms on challenging scenes

    Multi-Modal Mean-Fields via Cardinality-Based Clamping

    Get PDF
    Mean Field inference is central to statistical physics. It has attracted much interest in the Computer Vision community to efficiently solve problems expressible in terms of large Conditional Random Fields. However, since it models the posterior probability distribution as a product of marginal probabilities, it may fail to properly account for important dependencies between variables. We therefore replace the fully factorized distribution of Mean Field by a weighted mixture of such distributions, that similarly minimizes the KL-Divergence to the true posterior. By introducing two new ideas, namely, conditioning on groups of variables instead of single ones and using a parameter of the conditional random field potentials, that we identify to the temperature in the sense of statistical physics to select such groups, we can perform this minimization efficiently. Our extension of the clamping method proposed in previous works allows us to both produce a more descriptive approximation of the true posterior and, inspired by the diverse MAP paradigms, fit a mixture of Mean Field approximations. We demonstrate that this positively impacts real-world algorithms that initially relied on mean fields.Comment: Submitted for review to CVPR 201

    On spatial equilibria in a social interaction model

    Get PDF
    Social interactions are at the essence of societies and explain the gathering of individuals in villages, agglomerations, or cities. We study the emergence of multiple agglomerations as resulting from the interplay between spatial interaction externalities and competition in the land market. We show that the geographical nature of the residential space tremendously affects the properties of spatial equilibria. In particular, when agents locate on an open land strip (line segment), a single city emerges in equilibrium. In contrast, when the spatial economy extends along a closed land strip (circumference), multiple equilibria with odd numbers of cities arise. Spatial equilibrium configurations involve a high degree of spatial symmetry in terms of city size and location, and can be Pareto-ranked.social interaction, multiple agglomerations, spatial economy
    • …
    corecore