4,245 research outputs found
Prototyping of petalets for the Phase-II Upgrade of the silicon strip tracking detector of the ATLAS Experiment
In the high luminosity era of the Large Hadron Collider, the HL-LHC, the
instantaneous luminosity is expected to reach unprecedented values, resulting
in about 200 proton-proton interactions in a typical bunch crossing. To cope
with the resultant increase in occupancy, bandwidth and radiation damage, the
ATLAS Inner Detector will be replaced by an all-silicon system, the Inner
Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and
exploits the concept of modularity. Prototyping and testing of various strip
detector components has been carried out. This paper presents the developments
and results obtained with reduced-size structures equivalent to those foreseen
to be used in the forward region of the silicon strip detector. Referred to as
petalets, these structures are built around a composite sandwich with embedded
cooling pipes and electrical tapes for routing the signals and power. Detector
modules built using electronic flex boards and silicon strip sensors are glued
on both the front and back side surfaces of the carbon structure. Details are
given on the assembly, testing and evaluation of several petalets. Measurement
results of both mechanical and electrical quantities are shown. Moreover, an
outlook is given for improved prototyping plans for large structures.Comment: 22 pages for submission for Journal of Instrumentatio
Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC
While the tracking detectors of the ATLAS and CMS experiments have shown
excellent performance in Run 1 of LHC data taking, and are expected to continue
to do so during LHC operation at design luminosity, both experiments will have
to exchange their tracking systems when the LHC is upgraded to the
high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems
need to operate in an environment in which both the hit densities and the
radiation damage will be about an order of magnitude higher than today. In
addition, the new trackers need to contribute to the first level trigger in
order to maintain a high data-taking efficiency for the interesting processes.
Novel detector technologies have to be developed to meet these very challenging
goals. The German groups active in the upgrades of the ATLAS and CMS tracking
systems have formed a collaborative "Project on Enabling Technologies for
Silicon Microstrip Tracking Detectors at the HL-LHC" (PETTL), which was
supported by the Helmholtz Alliance "Physics at the Terascale" during the years
2013 and 2014. The aim of the project was to share experience and to work
together on key areas of mutual interest during the R&D phase of these
upgrades. The project concentrated on five areas, namely exchange of
experience, radiation hardness of silicon sensors, low mass system design,
automated precision assembly procedures, and irradiations. This report
summarizes the main achievements
Determination of the Michel Parameters rho, xi, and delta in tau-Lepton Decays with tau --> rho nu Tags
Using the ARGUS detector at the storage ring DORIS II, we have
measured the Michel parameters , , and for
decays in -pair events produced at
center of mass energies in the region of the resonances. Using
as spin analyzing tags, we find , , , , and . In addition, we report
the combined ARGUS results on , , and using this work
und previous measurements.Comment: 10 pages, well formatted postscript can be found at
http://pktw06.phy.tu-dresden.de/iktp/pub/desy97-194.p
A double-sided, shield-less stave prototype for the ATLAS upgrade strip tracker for the high luminosity LHC
A detailed description of the integration structures for the barrel region of the silicon strips tracker of the ATLAS Phase-II upgrade for the upgrade of the Large Hadron Collider, the so-called High Luminosity LHC (HL-LHC), is presented. This paper focuses on one of the latest demonstrator prototypes recently assembled, with numerous unique features. It consists of a shortened, shield-less, and double sided stave, with two candidate power distributions implemented. Thermal and electrical performances of the prototype are presented, as well as a description of the assembly procedures and tools
Aging Studies for the Large Honeycomb Drift Tube System of the Outer Tracker of HERA-B
The HERA-B Outer Tracker consists of drift tubes folded from polycarbonate
foil and is operated with Ar/CF4/CO2 as drift gas. The detector has to stand
radiation levels which are similar to LHC conditions. The first prototypes
exposed to radiation in HERA-B suffered severe radiation damage due to the
development of self-sustaining currents (Malter effect). In a subsequent
extended R&D program major changes to the original concept for the drift tubes
(surface conductivity, drift gas, production materials) have been developed and
validated for use in harsh radiation environments. In the test program various
aging effects (like Malter currents, gain loss due to anode aging and etching
of the anode gold surface) have been observed and cures by tuning of operation
parameters have been developed.Comment: 14 pages, 6 figures, to be published in the Proceedings of the
International Workshop On Aging Phenomena In Gaseous Detectors, 2-5 Oct 2001,
Hamburg, German
The Outer Tracker Detector of the HERA-B Experiment. Part II: Front-End Electronics
The HERA-B Outer Tracker is a large detector with 112674 drift chamber
channels. It is exposed to a particle flux of up to 2x10^5/cm^2/s thus coping
with conditions similar to those expected for the LHC experiments. The
front-end readout system, based on the ASD-8 chip and a customized TDC chip, is
designed to fulfil the requirements on low noise, high sensitivity, rate
tolerance, and high integration density. The TDC system is based on an ASIC
which digitizes the time in bins of about 0.5 ns within a total of 256 bins.
The chip also comprises a pipeline to store data from 128 events which is
required for a deadtime-free trigger and data acquisition system. We report on
the development, installation, and commissioning of the front-end electronics,
including the grounding and noise suppression schemes, and discuss its
performance in the HERA-B experiment
Investigation of nitrogen enriched silicon for particle detectors
This article explores the viability of nitrogen enriched silicon for particle physics application. For that purpose silicon diodes and strip sensors were produced using high resistivity float zone silicon, diffusion oxygenated float zone silicon, nitrogen enriched float zone silicon and magnetic Czochralski silicon. The article features comparative studies using secondary ion mass spectrometry, electrical characterization, edge transient current technique, source and thermally stimulated current spectroscopy measurements on sensors that were irradiated up to a fluence of 1015 neq/cm2. Irradiations were performed with 23 MeV protons at the facilities in Karlsruhe (KIT), with 24 GeV/c protons at CERN (PS-IRRAD) and neutrons at the research reactor in Ljubljana. Secondary ion mass spectrometry measurements give evidence for nitrogen loss after processing, which makes gaining from nitrogen enrichment difficult
The HERA-B Ring Imaging Cherenkov Counter
The HERA-B RICH uses a radiation path length of 2.8 m in C_4F_10 gas and a
large 24 square meters spherical mirror for imaging Cherenkov rings. The photon
detector consists of 2240 Hamamatsu multi-anode photomultipliers with about
27000 channels. A 2:1 reducing two-lens telescope in front of each PMT
increases the sensitive area at the expense of increased pixel size, resulting
in a contribution to the resolution which roughly matches that of dispersion.
The counter was completed in January of 1999, and its performance has been
steady and reliable over the years it has been in operation. The design
performance of the RICH was fully reached: the average number of detected
photons in the RICH for a beta=1 particle was found to be 33 with a single hit
resolution of 0.7 mrad and 1 mrad in the fine and coarse granularity regions,
respectively.Comment: 29 pages, 23 figure
- …