31 research outputs found
Modulation des réponses immunitaires innées par les oncovirus EBV et HPV
Cancer represents the second most common cause of death in industrialized countries. Epidemiological and biological studies have now conclusively proved that a variety of infectious agents constitute one of the main causes of cancer worldwide. It has been pointed out that more than 20% of cancers are from infectious origin. HPV high-risk mucosal types are associated to 98% of all cervical cancer cases. Regarding EBV, over 90% of the worldâs population is infected and can give rise to malignancies such as Burkitt lymphoma or Hodgkin disease.(Young and Rickinson 2004) Keys features for oncoviruses to induce cancer are firstly to perÂŹsist by dampening host immune responses and to induce genomic instability in the host by altering the regulation of the cell cycle leading the infected cells to an uncontrolled proliferation. The purpose of this thesis was to find new mechanisms by which EBV and HPV can promote carcinogenesis. We have shown that EBV can alter the regulation and expression of TLRs, the key effectors molecules of the innate immune response. EBV infection of human primary B cells resulted in the inhibition of TLR9 functionality. Our study described a mechanism used by EBV to suppress the host immune response by deregulating the TLR9 transcript through LMP1-mediated NF-ÎșB activation. As TLR was found deregulated in many cancers, we hypothesized that TLR9 may also a direct role in the process of cell cycle control and that loss of its expression may lead to transformation of the cell. Our overall objective here was to study the role of TLR9 in suppressing the events that initiates transformation of epithelial cells in the setting of cervical cancer (virus-associated) and in head and neck cancer (nonâvirus-associated). A third project dealt with the mechanism cell cycle deregulation by the oncoprotein E6 which expressed during infection with HPV16. We reported that HPV16E6 targets the cellular factor p150Sal2, which positively regulates p21 transcription. HPV16E6 associates with p150Sal2, inducing its functional inhibition by preventing its binding to cis elements on the p21 promoter. These data described a novel mechanism by which HPV16E6 induces cell cycle deregulation with a p53-independent pathway preventing G1/S arrest and allowing cellular proliferation and efficient viral DNA replicationLe cancer reprĂ©sente la deuxiĂšme cause de mortalitĂ© dans les pays industrialisĂ©s. Il a Ă©tĂ© dĂ©montrĂ© que 20% des cancers sont d'origine infectieuse. Nous nous sommes intĂ©ressĂ©s Ă deux oncovirus HPV (virus du papillome humain) et EBV (Epstein-Barr Virus) responsable du cancer de l'utĂ©rus et de divers lymphome B rĂ©ciproquement. Les Ă©vĂ©nements clĂ©s pour le dĂ©veloppement d'un cancer viro-induit sont la persistance du virus via la dĂ©rĂ©gulation des rĂ©ponses immunitaires et l'induction d'une instabilitĂ© gĂ©ÂŹnomique via une dĂ©rĂ©gulation du cycle cellulaire. Nous avons donc cherchĂ© si EBV Ă©tait capable d'altĂ©rer la rĂ©ponse immunitaire innĂ©e. Nous avons montrĂ© que EBV Ă©tait capable d'inhiber TLR9 un acteur clef de la rĂ©ponse immunitaire innĂ©e. Comme TLR9 est inhibĂ© dans un certain nombre de cancers, nous nous sommes demandĂ© si ce rĂ©cepteur pouvait Ă©galement, avoir un rĂŽle dans l'oncogenĂšse. Nous avons montrĂ© que la rĂ©expression de TLR9 induisait un ralentissement transitoire de la prolifĂ©ration cellulaire. Nous nous sommes par la suite intĂ©ressĂ©s aux mĂ©canismes de dĂ©rĂ©gulation du cycle cellulaire induits par E6 une oncoprotĂ©ine de HPV16. Nous avons trouvĂ© un nouveau mĂ©canisme d'inhibition de l'inhibiteur du cycle cellulaire, p21. HPV16E6 se lie et inhibe les fonctions de du facteur de transcription p150Sal2, ce qui induit une inhibition de p21 dans un contexte p53 indĂ©pendan
Antigen specific activation of cytotoxic CD8+ T cells by Staphylococcus aureus infected dendritic cells
International audienceStaphylococcus aureus ( S. aureus ) is a pathogen associated with a wide variety of diseases, from minor to life-threatening infections. Antibiotic-resistant strains have emerged, leading to increasing concern about the control of S. aureus infections. The development of vaccines may be one way to overcome these resistant strains. However, S. aureus ability to internalize into cells â and thus to form a reservoir escaping humoral immunity â is a challenge for vaccine development. A role of T cells in the elimination of persistent S. aureus has been established in mice but it remains to be established if CD8 + T cells could display a cytotoxic activity against S. aureus infected cells. We examined in vitro the ability of CD8 + T cells to recognize and kill dendritic cells infected with S. aureus. We first evidenced that both primary mouse dendritic cells and DC2.4 cell line can be infected with S. aureus . We then generated a strain of S. aureus expressing a model CD8 epitope and transgenic F5 CD8 + T cells recognizing this model epitope were used as reporter T cells. In response to S. aureus -infected dendritic cells, F5 CD8 + T cells produced IFN-Îł in an antigen-specific manner and displayed an increased ability to kill infected cells. Altogether, these results demonstrate that cells infected by S. aureus display bacteria-derived epitopes at their surface that are recognized by CD8 + T cells. This paves the way for the development of CD8 + T cell-based therapies against S. aureus
Dual impact of live Staphylococcus aureus on the osteoclast lineage, leading to increased bone resorption
International audienceBACKGROUND: Bone and joint infection, mainly caused by Staphylococcus aureus, is associated with significant morbidity and mortality, characterized by severe inflammation and progressive bone destruction. Studies mostly focused on the interaction between S. aureus and osteoblasts, the bone matrix-forming cells, while interactions between S. aureus and osteoclasts, the only cells known to be able to degrade bone, have been poorly explored. METHODS: We developed an in vitro infection model of primary murine osteoclasts to study the direct impact of live S. aureus on osteoclastogenesis and osteoclast resorption activity. RESULTS: Staphylococcal infection of bone marrow-derived osteoclast precursors induced their differentiation into activated macrophages that actively secreted proinflammatory cytokines. These cytokines enhanced the bone resorption capacity of uninfected mature osteoclasts and promoted osteoclastogenesis of the uninfected precursors at the site of infection. Moreover, infection of mature osteoclasts by live S. aureus directly enhanced their ability to resorb bone by promoting cellular fusion. CONCLUSIONS: Our results highlighted two complementary mechanisms involved in bone loss during bone and joint infection, suggesting that osteoclasts could be a pivotal target for limiting bone destruction
Cell type-specific recognition of human metapneumoviruses (HMPVs) by retinoic acid-inducible gene I (RIG-I) and TLR7 and viral interference of RIG-I ligand recognition by HMPV-B1 phosphoprotein
Human metapneumoviruses (HMPVs) are recently identified Paramyxoviridae that contribute to respiratory tract infections in children. No effective treatments or vaccines are available. Successful defense against virus infection relies on early detection by germ line-encoded pattern recognition receptors and activation of cytokine and type I IFN genes. Recently, the RNA helicase retinoic acid-inducible gene I (RIG-I) has been shown to sense HMPV. In this study, we investigated the abilities of two prototype strains of HMPV (A1 [NL\1\00] and B1 [NL\1\99]) to activate RIG-I and induce type I IFNs. Despite the abilities of both HMPV-A1 and HMPV-B1 to infect and replicate in cell lines and primary cells, only the HMPV-A1 strain triggered RIG-I to induce IFNA/B gene transcription. The failure of the HMPV-B1 strain to elicit type I IFN production was dependent on the B1 phosphoprotein, which specifically prevented RIG-I-mediated sensing of HMPV viral 5\u27 triphosphate RNA. In contrast to most cell types, plasmacytoid dendritic cells displayed a unique ability to sense both HMPV-A1 and HMPV-B1 and in this case sensing was via TLR7 rather than RIG-I. Collectively, these data reveal differential mechanisms of sensing for two closely related viruses, which operate in cell type-specific manners
Optimized vaccination regimen linked to exhaustive screening approaches identifies 2 novel HLA-B7 restricted epitopes within hepatitis C virus NS3 protein.
International audienceBroad immune responses, in particular specific for the NS3 protein and mediated by both CD8+ and CD4+T lymphocytes, are thought to play a critical role in the control of hepatitis C virus (HCV) infection. In this study, we searched for novel HLA-B*0702 NS3 restricted epitopes following an optimized NS3NS4 immunization protocol in transgenic mice expressing HLA-B*0702 molecule. Combining predicted and overlapping peptides, we identified two novel epitopes, WPA10 (aa 1111-1120) and LSP10 (aa 1153-1162), which triggered significant IFN-gamma-producing T cell frequencies and high CTL responses. Both epitopes were shown to be immunogenic when used as synthetic peptides to immunize mice. The relevance of these epitopes to humans was demonstrated, as both were able in vitro to recall specific IFN-gamma and IL10-producing cells from peripheral blood mononuclear cells of HCV infected patients. Such epitopes enlarge the pool of NS3-specific CD8+T cell epitopes available to perform immunomonitoring of HCV infection and to develop vaccines
TLR9 transcriptional regulation in response to double-stranded DNA viruses
International audienceThe stimulation of TLRs by pathogen-derived molecules leads to the production of proinflammatory cytokines. Because uncontrolled inflammation can be life threatening, TLR regulation is important; however, few studies have identified the signaling pathways that contribute to the modulation of TLR expression. In this study, we examined the relationship between activation and the transcriptional regulation of TLR9. We demonstrate that infection of primary human epithelial cells, B cells, and plasmacytoid dendritic cells with dsDNA viruses induces a regulatory temporary negative-feedback loop that blocks TLR9 transcription and function. TLR9 transcriptional downregulation was dependent on TLR9 signaling and was not induced by TLR5 or other NF-\kappaB activators, such as TNF-α. Engagement of the TLR9 receptor induced the recruitment of a suppressive complex, consisting of NF-\kappaBp65 and HDAC3, to an NF-\kappaB cis element on the TLR9 promoter. Knockdown of HDAC3 blocked the transient suppression in which TLR9 function was restored. These results provide a framework for understanding the complex pathways involved in transcriptional regulation of TLR9, immune induction, and inflammation against viruses
Memory T-Cell-Mediated Immune Responses Specific to an Alternative Core Protein in Hepatitis C Virus Infection
In vitro studies have described the synthesis of an alternative reading frame form of the hepatitis C virus (HCV) core protein that was named F protein or ARFP (alternative reading frame protein) and includes a domain coded by the +1 open reading frame of the RNA core coding region. The expression of this protein in HCV-infected patients remains controversial. We have analyzed peripheral blood from 47 chronically or previously HCV-infected patients for the presence of T lymphocytes and antibodies specific to the ARFP. Anti-ARFP antibodies were detected in 41.6% of the patients infected with various HCV genotypes. Using a specific ARFP 99-amino-acid polypeptide as well as four ARFP predicted class I-restricted 9-mer peptides, we show that 20% of the patients display specific lymphocytes capable of producing gamma interferon, interleukin-10, or both cytokines. Patients harboring three different viral genotypes (1a, 1b, and 3) carried T lymphocytes reactive to genotype 1b-derived peptides. In longitudinal analysis of patients receiving therapy, both core and ARFP-specific T-cell- and B-cell-mediated responses were documented. The magnitude and kinetics of the HCV antigen-specific responses differed and were not linked with viremia or therapy outcome. These observations provide strong and new arguments in favor of the synthesis, during natural HCV infection, of an ARFP derived from the core sequence. Moreover, the present data provide the first demonstration of the presence of T-cell-mediated immune responses directed to this novel HCV antigen
The Human papillomavirus type 16 E7 oncoprotein induces a transcriptional repressor complex on the Toll-like receptor 9 promoter
Human papillomavirus type 16 (HPV16) and other oncogenic viruses have been reported to deregulate immunity by suppressing the function of the double-stranded DNA innate sensor TLR9. However, the mechanisms leading to these events remain to be elucidated. We show that infection of human epithelial cells with HPV16 promotes the formation of an inhibitory transcriptional complex containing NF-ÎșBp50-p65 and ERα induced by the E7 oncoprotein. The E7-mediated transcriptional complex also recruited the histone demethylase JARID1B and histone deacetylase HDAC1. The entire complex bound to a specific region on the TLR9 promoter, which resulted in decreased methylation and acetylation of histones upstream of the TLR9 transcriptional start site. The involvement of NF-ÎșB and ERα in the TLR9 down-regulation by HPV16 E7 was fully confirmed in cervical tissues from human patients. Importantly, we present evidence that the HPV16-induced TLR9 down-regulation affects the interferon response which negatively regulates viral infection. Our studies highlight a novel HPV16-mediated mechanism that combines epigenetic and transcriptional events to suppress a key innate immune sensor