4,967 research outputs found
Empirical comparison of a fixed-base and a moving-base simulation of a helicopter engaged in visually conducted slalom runs
Combined visual, motion, and aural cues for a helicopter engaged in visually conducted slalom runs at low altitude were studied. The evaluation of the visual and aural cues was subjective, whereas the motion cues were evaluated both subjectively and objectively. Subjective and objective results coincided in the area of control activity. Generally, less control activity is present under motion conditions than under fixed-base conditions, a fact attributed subjectively to the feeling of realistic limitations of a machine (helicopter) given by the addition of motion cues. The objective data also revealed that the slalom runs were conducted at significantly higher altitudes under motion conditions than under fixed-base conditions
Inherent noise can facilitate coherence in collective swarm motion
Among the most striking aspects of the movement of many animal groups are their sudden coherent changes in direction. Recent observations of locusts and starlings have shown that this directional switching is an intrinsic property of their motion. Similar direction switches are seen in self-propelled particle and other models of group motion. Comprehending the factors that determine such switches is key to understanding the movement of these groups. Here, we adopt a coarse-grained approach to the study of directional switching in a self-propelled particle model assuming an underlying one-dimensional FokkerâPlanck equation for the mean velocity of the particles. We continue with this assumption in analyzing experimental data on locusts and use a similar systematic FokkerâPlanck equation coefficient estimation approach to extract the relevant information for the assumed FokkerâPlanck equation underlying that experimental data. In the experiment itself the motion of groups of 5 to 100 locust nymphs was investigated in a homogeneous laboratory environment, helping us to establish the intrinsic dynamics of locust marching bands. We determine the mean time between direction switches as a function of group density for the experimental data and the self-propelled particle model. This systematic approach allows us to identify key differences between the experimental data and the model, revealing that individual locusts appear to increase the randomness of their movements in response to a loss of alignment by the group. We give a quantitative description of how locusts use noise to maintain swarm alignment. We discuss further how properties of individual animal behavior, inferred by using the FokkerâPlanck equation coefficient estimation approach, can be implemented in the self-propelled particle model to replicate qualitatively the group level dynamics seen in the experimental data
The relation between gas density and velocity power spectra in galaxy clusters: qualitative treatment and cosmological simulations
We address the problem of evaluating the power spectrum of the velocity field
of the ICM using only information on the plasma density fluctuations, which can
be measured today by Chandra and XMM-Newton observatories. We argue that for
relaxed clusters there is a linear relation between the rms density and
velocity fluctuations across a range of scales, from the largest ones, where
motions are dominated by buoyancy, down to small, turbulent scales:
, where
is the spectral amplitude of the density perturbations at wave number ,
is the mean square component of the velocity field,
is the sound speed, and is a dimensionless constant of order unity.
Using cosmological simulations of relaxed galaxy clusters, we calibrate this
relation and find . We argue that this value is set at
large scales by buoyancy physics, while at small scales the density and
velocity power spectra are proportional because the former are a passive scalar
advected by the latter. This opens an interesting possibility to use gas
density power spectra as a proxy for the velocity power spectra in relaxed
clusters, across a wide range of scales.Comment: 6 pages, 3 figures, submitted to ApJ Letter
Groundâbased measurements of NOx and total reactive oxidized nitrogen (NOy) at Sable Island, Nova Scotia, during the NARE 1993 summer intensive
Measurements of NO, NO2, and total reactive oxidized nitrogen (NOy) were added to ongoing measurements of aerosols, CO, and O3 at Sable Island (43°55âČN, 60°01âČW), Nova Scotia, during the North Atlantic Regional Experiment (NARE) 1993 summer intensive. Ambient levels of NOx and NOy were found to be highly variable, and elevated levels can be attributed to the transport of polluted continental air or presumably to relatively fresh emissions from sources upwind (e.g., ship traffic). The median values for NOx and NOy are 98 and 266 parts per trillion by volume (pptv), respectively. A multiday pollution episode occurred during which elevated NOx and NOy were observed with enhanced levels of O3, CO, and condensation nuclei. Air masses of recent tropical marine origin characterized by low and constant levels of O3 and CO were sampled after Hurricane Emily. The correlation between ozone and CO is reasonably good, although the relation is driven by the single pollution episode observed during the study. The correlation of O3 with NOy and with NOyâNOx is complicated by the presumed NOy removal processes in the marine boundary layer. Examination of the radiosonde data and comparisons of the surface data with those obtained on the overflying aircraft provide clear indications of vertical stratification above the site
Photochemical production and loss rates of ozone at Sable Island, Nova Scotia during the North Atlantic Regional Experiment (NARE) 1993 summer intensive
Three weeks of summertime surfaceâbased chemical and meteorological observations at Sable Island, Nova Scotia during the North Atlantic Regional Experiment (NARE) 1993 summer intensive are used to study instantaneous photochemical production and loss rates of ozone by means of a numerical photochemical model. Results are most sensitive to the averaging scheme of data used to constrain the model and the ambient variability of the measurements. Model simulations driven by a time series of 5 min averaged data, most representative of the chemistry at the site, yield an average net photochemical ozone production of 3.6 ppbv/d. Estimates of net ozone production designed to filter out local sources, by using 1000â1400 LT median values of observations to drive the model and by excluding shortâlived hydrocarbons, give values ranging from 1 to 4 ppbv/d. These positive values of net ozone production within the marine boundary layer over Sable Island demonstrate the impact of polluted continental plumes on the background photochemistry of the region during the intensive. The dominant ambient variables controlling photochemical production and loss rates of ozone at the site during the measurement campaign appear to be levels of nitrogen oxides, ozone, nonmethane hydrocarbons, and solar intensity determined by cloud cover. The model partitioning of nitrogen oxides agrees for the most part with measurements, lending credence to calculated photochemical production and loss rates of ozone as well as inferred levels of peroxy radicals not measured at the site. Discrepancies, however, often occur during episodes of intermittent cloud cover, fog, and rain, suggesting the influence of cloud processes on air masses reaching the site
Stability properties of the collective stationary motion of self-propelling particles with conservative kinematic constraints
In our previous papers we proposed a continuum model for the dynamics of the
systems of self-propelling particles with conservative kinematic constraints on
the velocities. We have determined a class of stationary solutions of this
hydrodynamic model and have shown that two types of stationary flow, linear and
radially symmetric (vortical) flow, are possible. In this paper we consider the
stability properties of these stationary flows. We show, using a linear
stability analysis, that the linear solutions are neutrally stable with respect
to the imposed velocity and density perturbations. A similar analysis of the
stability of the vortical solution is found to be not conclusive.Comment: 13 pages, 3 figure
Therapeutic and educational objectives in robot assisted play for children with autism
âThis material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." âCopyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.â DOI: 10.1109/ROMAN.2009.5326251This article is a methodological paper that describes the therapeutic and educational objectives that were identified during the design process of a robot aimed at robot assisted play. The work described in this paper is part of the IROMEC project (Interactive Robotic Social Mediators as Companions) that recognizes the important role of play in child development and targets children who are prevented from or inhibited in playing. The project investigates the role of an interactive, autonomous robotic toy in therapy and education for children with special needs. This paper specifically addresses the therapeutic and educational objectives related to children with autism. In recent years, robots have already been used to teach basic social interaction skills to children with autism. The added value of the IROMEC robot is that play scenarios have been developed taking children's specific strengths and needs into consideration and covering a wide range of objectives in children's development areas (sensory, communicational and interaction, motor, cognitive and social and emotional). The paper describes children's developmental areas and illustrates how different experiences and interactions with the IROMEC robot are designed to target objectives in these areas.Final Published versio
- âŠ