57 research outputs found

    Intervenções com base cognitivas para idosos com impairemet cognitivo leve: Avaliação da eficácia e efeitos servida

    Get PDF
    [ES] Debido al incremento en el porcentaje de adultos mayores, así como de las enfermedades degenerativas, existe un creciente interés en la determinación de métodos psicosociales eficaces dirigidos a sujetos con Deterioro Cognitivo Leve. Recientes estudios experimentales exponen efectos positivos de las intervenciones cognitivas dirigidas a esta población, tanto en métodos tradicionales y como en estrategias de intervención por medio de nuevas tecnologías. La presente revisión proporciona un análisis sistemático de la literatura existente en miras de valorar el efecto y los alcances de las intervenciones cognitivas no farmacológicas existentes en la actualidad, dirigidas a adultos mayores con Deterioro Cognitivo Leve. [EN] Due to the significant increase in the percentage of older adults, as well as degenerative diseases, there is growing interest in the determination of effective psychosocial approaches aimed to subjects with mild cognitive impairment (MCI). Recent experimental studies indicate positive effects of cognitive interventions in population with DCL in both, traditional methods and computer based interventions. The present review provides a systematic analysis of the literature in order to assess the effect and scope of actual non-pharmacological cognitive interventions, aimed to older adults with mild cognitive impairment

    Neratinib overcomes trastuzumab resistance in HER2 amplified breast cancer.

    Get PDF
    Trastuzumab has been shown to improve the survival outcomes of HER2 positive breast cancer patients. However, a significant proportion of HER2-positive patients are either inherently resistant or develop resistance to trastuzumab. We assessed the effects of neratinib, an irreversible panHER inhibitor, in a panel of 36 breast cancer cell lines. We further assessed its effects with or without trastuzumab in several sensitive and resistant breast cancer cells as well as a BT474 xenograft model. We confirmed that neratinib was significantly more active in HER2-amplified than HER2 non-amplified cell lines. Neratinib decreased the activation of the 4 HER receptors and inhibited downstream pathways. However, HER3 and Akt were reactivated at 24 hours, which was prevented by the combination of trastuzumab and neratinib. Neratinib also decreased pHER2 and pHER3 in acquired trastuzumab resistant cells. Neratinib in combination with trastuzumab had a greater growth inhibitory effect than either drug alone in 4 HER2 positive cell lines. Furthermore, trastuzumab in combination with neratinib was growth inhibitory in SKBR3 and BT474 cells which had acquired resistance to trastuzumab as well as in a BT474 xenograft model. Innately trastuzumab resistant cell lines showed sensitivity to neratinib, but the combination did not enhance response compared to neratinib alone. Levels of HER2 and phospho-HER2 showed a direct correlation with sensitivity to neratinib. Our data indicate that neratinib is an effective anti-HER2 therapy and counteracted both innate and acquired trastuzumab resistance in HER2 positive breast cancer. Our results suggest that combined treatment with trastuzumab and neratinib is likely to be more effective than either treatment alone for both trastuzumab-sensitive breast cancer as well as HER2-positive tumors with acquired resistance to trastuzumab

    DUSP4 is associated with increased resistance against anti-HER2 therapy in breast cancer

    Get PDF
    The majority of patients develop resistance against suppression of HER2-signaling mediated by trastuzumab in HER2 positive breast cancer (BC). HER2 overexpression activates multiple signaling pathways, including the mitogen-activated protein kinase (MAPK) cascade. MAPK phosphatases (MKPs) are essential regulators of MAPKs and participate in many facets of cellular regulation, including proliferation and apoptosis. We aimed to identify whether differential MKPs are associated with resistance to targeted therapy in patients previously treated with trastuzumab. Using gene chip data of 88 HER2- positive, trastuzumab treated BC patients, candidate MKPs were identified by Receiver Operator Characteristics analysis performed in R. Genes were ranked using their achieved area under the curve (AUC) values and were further restricted to markers significantly associated with worse survival. Functional significance of the two strongest predictive markers was evaluated in vitro by gene silencing in HER2 overexpressing, trastuzumab resistant BC cell lines SKTR and JIMT-1. The strongest predictive MKPs were DUSP4/MKP-2 (AUC=0.75, p=0.0096) and DUSP6/MKP-3 (AUC=0.77, p=5.29E-05). Higher expression for these correlated to worse survival (DUSP4: HR=2.05, p=0.009 and DUSP6: HR=2, p=0.0015). Silencing of DUSP4 had significant sensitization effects – viability of DUSP4 siRNA transfected, trastuzumab treated cells decreased significantly compared to scramble-siRNA transfected controls (SKTR: p=0.016; JIMT-1: p=0.016). In contrast, simultaneous treatment with DUSP6 siRNA and trastuzumab did not alter cell proliferation. Our findings suggest that DUSP4 may represent a new potential target to overcome trastuzumab resistance

    Effect of p95HER2/611CTF on the Response to Trastuzumab and Chemotherapy

    Get PDF
    Human epidermal growth factor receptor 2 (HER2)–positive breast cancers are currently treated with trastuzumab, an anti-HER2 antibody. About 30% of these tumors express a group of HER2 fragments collectively known as p95HER2. Our previous work indicated that p95HER2-positive tumors are resistant to trastuzumab monotherapy. However, recent results showed that tumors expressing the most active of these fragments, p95HER2/611CTF, respond to trastuzumab plus chemotherapy. To clarify this discrepancy, we analyzed the response to chemotherapy of cell lines transfected with p95HER2/611CTF and patient-derived xenografts (n = 7 mice per group) with different levels of the fragment. All statistical tests were two-sided. p95HER2/611CTF-negative and positive tumors showed different responses to various chemotherapeutic agents, which are particularly effective on p95HER2/611CTF-positive cells. Furthermore, chemotherapy sensitizes p95HER2/611CTF-positive patient-derived xenograft tumors to trastuzumab (mean tumor volume, trastuzumab alone: 906mm3, 95% confidence interval = 1274 to 538 mm3; trastuzumab+doxorubicin: 259mm3, 95% confidence interval = 387 to 131 mm3; P < .001). This sensitization may be related to HER2 stabilization induced by chemotherapy in p95HER2/611CTF-positive cells

    Systematic Collaborative Reanalysis of Genomic Data Improves Diagnostic Yield in Neurologic Rare Diseases

    Get PDF
    Altres ajuts: Generalitat de Catalunya, Departament de Salut; Generalitat de Catalunya, Departament d'Empresa i Coneixement i CERCA Program; Ministerio de Ciencia e Innovación; Instituto Nacional de Bioinformática; ELIXIR Implementation Studies (CNAG-CRG); Centro de Investigaciones Biomédicas en Red de Enfermedades Raras; Centro de Excelencia Severo Ochoa; European Regional Development Fund (FEDER).Many patients experiencing a rare disease remain undiagnosed even after genomic testing. Reanalysis of existing genomic data has shown to increase diagnostic yield, although there are few systematic and comprehensive reanalysis efforts that enable collaborative interpretation and future reinterpretation. The Undiagnosed Rare Disease Program of Catalonia project collated previously inconclusive good quality genomic data (panels, exomes, and genomes) and standardized phenotypic profiles from 323 families (543 individuals) with a neurologic rare disease. The data were reanalyzed systematically to identify relatedness, runs of homozygosity, consanguinity, single-nucleotide variants, insertions and deletions, and copy number variants. Data were shared and collaboratively interpreted within the consortium through a customized Genome-Phenome Analysis Platform, which also enables future data reinterpretation. Reanalysis of existing genomic data provided a diagnosis for 20.7% of the patients, including 1.8% diagnosed after the generation of additional genomic data to identify a second pathogenic heterozygous variant. Diagnostic rate was significantly higher for family-based exome/genome reanalysis compared with singleton panels. Most new diagnoses were attributable to recent gene-disease associations (50.8%), additional or improved bioinformatic analysis (19.7%), and standardized phenotyping data integrated within the Undiagnosed Rare Disease Program of Catalonia Genome-Phenome Analysis Platform functionalities (18%)

    Pasados y presente. Estudios para el profesor Ricardo García Cárcel

    Get PDF
    Ricardo García Cárcel (Requena, 1948) estudió Historia en Valencia bajo el magisterio de Joan Reglà, con quien formó parte del primer profesorado de historia moderna en la Universidad Autónoma de Barcelona. En esta universidad, desde hace prácticamente cincuenta años, ha desarrollado una extraordinaria labor docente y de investigación marcada por un sagaz instinto histórico, que le ha convertido en pionero de casi todo lo que ha estudiado: las Germanías, la historia de la Cataluña moderna, la Inquisición, las culturas del Siglo de Oro, la Leyenda Negra, Felipe II, Felipe V, Austrias y Borbones, la guerra de la Independencia, la historia cultural, los mitos de la historia de España... Muy pocos tienen su capacidad para reflexionar, ordenar, analizar, conceptualizar y proponer una visión amplia y llena de matices sobre el pasado y las interpretaciones historiográficas. A su laboriosidad inimitable se añade una dedicación sin límites en el asesoramiento de alumnos e investigadores e impulsando revistas, dosieres, seminarios o publicaciones colectivas. Una mínima correspondencia a su generosidad lo constituye este volumen a manera de ineludible agradecimiento

    The Mnks: MAP kinase-interacting kinases (MAP kinase signal-integrating kinases)

    No full text
    The human MAP kinase-interacting kinases (or MAP kinase signal-integrating kinases), Mnks, comprise a group of four proteins derived from two genes (Gene symbols: MKNK1 and MKNK2) by alternative splicing. Mnk1a/b differ at their C-termini, as do Mnk2a/2b: in each case, the a-form possesses a longer C-terminal region than the b-form, which lacks the MAP kinase-binding region. The N-termini of all forms contain a polybasic region which binds importin a and the translation factor scaffold protein eukaryotic initiation factor (eIF) 4G. The catalytic domains of Mnk1a/b and Mnk2a/b share three unusual features: two short inserts and a DFD feature where other kinases have DFG. Mnk isoforms differ markedly in their activity and regulation, and in subcellular localization. The best-characterised Mnk substrate is eIF4E. The cellular role of eIF4E phosphorylation remains unclear: it may promote export of certain mRNAs from the nucleus. Other Mnk substrates bind to AU-rich elements that modulate the stability/translation of specific mRNAs. Mnks may also control production of inflammatory mediators and signaling from tyrosine kinase receptors, as well as cell proliferation or survival

    The Drosophila protein kinase LK6 is regulated by ERK and phosphorylates the eukaryotic initiation factor eIf4E in vivo

    No full text
    In Drosophila cells, phosphorylation of eIF4E (eukaryotic initiation factor 4E) is required for growth and development. In Drosophila melanogaster, LK6 is the closest homologue of mammalian Mnk1 and Mnk2 [MAPK (mitogen-activated protein kinase) signal-integrating kinases 1 and 2 respectively] that phosphorylate mammalian eIF4E. Mnk1 is activated by both mitogen- and stress-activated signalling pathways [ERK (extracellular-signal-regulated kinase) and p38 MAPK], whereas Mnk2 contains a MAPK-binding motif that is selective for ERKs. LK6 possesses a binding motif similar to that in Mnk2. In the present study, we show that LK6 can phosphorylate eIF4E at the physiological site. LK6 activity is increased by the ERK signalling pathway and not by the stress-activated p38 MAPK signalling pathway. Consistent with this, LK6 binds ERK in mammalian cells, and this requires an intact binding motif. LK6 can bind to eIF4G in mammalian cells, and expression of LK6 increases the phosphorylation of the endogenous eIF4E. In Drosophila S2 Schneider cells, LK6 binds the ERK homologue Rolled, but not the p38 MAPK homologue. LK6 phosphorylates Drosophila eIF4E in vitro. The phosphorylation of endogenous eIF4E in Drosophila cells is increased by activation of the ERK pathway but not by arsenite, an activator of p38 MAPK. RNA interference directed against LK6 significantly decreases eIF4E phosphorylation in Drosophila cells. These results show that LK6 binds to ERK and is activated by ERK signalling and it is responsible for phosphorylating eIF4E in Drosophila

    Features in the N and C termini of the MAPK-interacting kinase Mnk1 mediate its nucleocytoplasmic shuttling

    No full text
    Eukaryotic initiation factor eIF4E binds to the 5'-cap structure of the mRNA and also to the molecular scaffold protein eIF4G. eIF4E is a phosphoprotein, and the kinases that act on it have been identified as the MAPK-interacting kinases Mnk1 and Mnk2. Mnk1/2 also bind to the scaffold protein eIF4G. The N-terminal region of Mnk1 has previously been shown to bind to importin , a component of the nuclear transport machinery, although Mnk1 itself is cytoplasmic. Here we identify a CRM1-type nuclear export motif in the C-terminal part of Mnk1. Substitution of hydrophobic residues in this motif results in Mnk1 becoming nuclear. This has allowed us to study the features of Mnk1 that are involved in its transport to the nucleus. This process requires part, but not all, of a polybasic region near the N terminus of Mnk1. Residues required for nuclear transport are also required for its interaction with importin . This polybasic region also serves a second function in that it is required for the binding of Mnk1 to eIF4G, although the residues involved in this interaction are not identical to those involved in the binding of Mnk1 to importin . Interaction of Mnk1 with eIF4G promotes the phosphorylation of eIF4E. Mutations that reduce the binding of Mnk1 to eIF4G in vivo and in vitro also decrease the ability of Mnk1 to enhance eIF4E phosphorylation in vivo, underlining the importance of the eIF4G-Mnk1 interaction in this process
    corecore