34 research outputs found
An Automated System for Hydroxide Catalysis Bonding of Precision-Aligned Optical Systems
Precision-aligned, robust, ultra-stable optical assemblies are required in an increasing number of space-based applications such as fundamental science, metrology and geodesy. Hydroxide catalysis bonding is a proven, glue-free, technology for building such optical systems from materials such as ULE, Zerodur and fused silica. Hydroxide catalysis bonded optical systems have flown in missions such as GP-B and LISA Pathfinder achieving picometer path-length stability and microradian component stability over full mission lifetime. Component alignment and bonding was previously a largely manual process that required skilled operators and significant time. We have recently automated most of the alignment and bonding steps with the goals of improving overall precision, speed and reliability. Positioning and bonding of an optical component to within 4 microns and 10 microradians of a target position and alignment can now be reliably completed within half an hour, compared to the many hours typically taken previously. The key new features of this system are an interferometer that monitors the parallelism and separation of the surfaces to be bonded and a precision multi-axis manipulator that can optimise component alignment as it brings it down to the point of bonding. We present a description of the system and a summary of the alignment results obtained in a series of 9 test bonds. We also show how this system is being developed for integration into a precision optical manufacturing facility for assembly of large optical systems
EAGLE multi-object AO concept study for the E-ELT
EAGLE is the multi-object, spatially-resolved, near-IR spectrograph
instrument concept for the E-ELT, relying on a distributed Adaptive Optics,
so-called Multi Object Adaptive Optics. This paper presents the results of a
phase A study. Using 84x84 actuator deformable mirrors, the performed analysis
demonstrates that 6 laser guide stars and up to 5 natural guide stars of
magnitude R<17, picked-up in a 7.3' diameter patrol field of view, allow us to
obtain an overall performance in terms of Ensquared Energy of 35% in a 75x75
mas^2 spaxel at H band, whatever the target direction in the centred 5' science
field for median seeing conditions. The computed sky coverage at galactic
latitudes |b|~60 is close to 90%.Comment: 6 pages, to appear in the proceedings of the AO4ELT conference, held
in Paris, 22-26 June 200
GreenHouse gas Observations of the Stratosphere and Troposphere (GHOST): an airborne shortwave-infrared spectrometer for remote sensing of greenhouse gases
GHOST is a novel, compact shortwave-infrared
grating spectrometer, designed for remote sensing of tropospheric
columns of greenhouse gases (GHGs) from an airborne platform. It observes
solar radiation at medium to high spectral resolution (better than 0.3 nm),
which has been reflected by the Earth's surface using similar methods to
those used by polar-orbiting satellites such as the JAXA GOSAT mission,
NASA's OCO-2, and the Copernicus Sentinel-5 Precursor. By using an original
design comprising optical fibre inputs along with a single diffraction
grating and detector array, GHOST is able to observe CO2 absorption
bands centred around 1.61 and 2.06 µm (the same wavelength regions
used by OCO-2 and GOSAT) whilst simultaneously measuring CH4
absorption at 1.65 µm (also observed by GOSAT) and CH4
and CO at 2.30 µm (observed by Sentinel-5P). With emissions
expected to become more concentrated towards city sources as the global
population residing in urban areas increases, there emerges a clear
requirement to bridge the spatial scale gap between small-scale urban
emission sources and global-scale GHG variations. In addition to the benefits
achieved in spatial coverage through being able to remotely sense GHG
tropospheric columns from an aircraft, the overlapping spectral ranges and
comparable spectral resolutions mean that GHOST has unique potential for
providing validation opportunities for these platforms, particularly over the
ocean, where ground-based validation measurements are not available. In this
paper we provide an overview of the GHOST instrument, calibration, and data
processing, demonstrating the instrument's performance and suitability for
GHG remote sensing. We also report on the first GHG observations made by
GHOST during its maiden science flights on board the NASA Global Hawk
unmanned aerial vehicle, which took place over the eastern Pacific Ocean in
March 2015 as part of the CAST/ATTREX joint Global Hawk flight campaign.</p
ELT-HIRES, the high resolution spectrograph for the ELT: results from the Phase A study
We present the results from the phase A study of ELT-HIRES, an optical-infrared High Resolution Spectrograph for ELT, which has just been completed by a consortium of 30 institutes from 12 countries forming a team of about 200 scientists and engineers. The top science cases of ELT-HIRES will be the detection of life signatures from exoplanet atmospheres, tests on the stability of Nature's fundamental couplings, the direct detection of the cosmic acceleration. However, the science requirements of these science cases enable many other groundbreaking science cases. The baseline design, which allows to fulfil the top science cases, consists in a modular fiber- fed cross-dispersed echelle spectrograph with two ultra-stable spectral arms providing a simultaneous spectral range of 0.4-1.8 μm at a spectral resolution of 100,000. The fiber-feeding allows ELT-HIRES to have several, interchangeable observing modes including a SCAO module and a small diffraction-limited IFU
EELT-HIRES the high-resolution spectrograph for the E-ELT
The first generation of E-ELT instruments will include an optic-infrared High Resolution Spectrograph, conventionally indicated as EELT-HIRES, which will be capable of providing unique breakthroughs in the fields of exoplanets, star and planet formation, physics and evolution of stars and galaxies, cosmology and fundamental physics. A 2-year long phase A study for EELT-HIRES has just started and will be performed by a consortium composed of institutes and organisations from Brazil, Chile, Denmark, France, Germany, Italy, Poland, Portugal, Spain, Sweden, Switzerland and United Kingdom. In this paper we describe the science goals and the preliminary technical concept for EELT-HIRES which will be developed during the phase A, as well as its planned development and consortium organisation during the study.This work was supported from the Italian National Institute for Astrophysics (Istituto Nazionale Italiano di Astrofisica, INAF). RM , DB, CH, MF, XS, DQ and MGH acknowledge support from the UK Science and Technology Facilities Council (STFC). MGH is supported by the ERC Advanced grant Emergence-32056. This work was supported by Fundaçao para a Ciência e a Tecnologia (FCT, Portugal), project ref. PTDC/FIS-AST/1526/2014, through national funds and by FEDER through COMPETE2020 (ref. POCI-01-0145-FEDER-016886), as well as through grant UID/FIS/04434/2013 (POCI-01-0145-FEDER-007672). P.F. and N.C.S. also acknowledge the support from FCT through Investigador FCT contracts of reference IF/01037/2013, IF/00169/2012, and IF/00028/2014, respectively, and POPH/FSE (EC) by FEDER funding through the program “Programa Operacional de Factores de Competitividade - COMPETE”. P.F. further acknowledge support from FCT in the form of exploratory projects of reference IF/01037/2013CP1191/CT0001 and IF/00028/2014/CP1215/CT0002. PJA acknowledges financial support from AYA2011-30147-C03-01 and AYA2014-54348-C3-1-R by MINECO/Spain, partially supported by FEDER funds/EU. Research activities of the Board of Stellar Astronomy, at the Federal University of Rio Grande do Norte are supported by continuous grant of CNPq, FAPERN and CAPES brazilian agencies and by the INCT INEspaço. E.D.M and V.Zh.A. also acknowledge the support from the FCT (Portugal) in the form of the grants SFRH/BPD/76606/2011 and SFRH/BPD/70574/2010, respectively
Ge immersed grating manufacturing and optical verification for the METIS high-resolution spectrograph
Instrumentatio