74 research outputs found

    Enhancement of Xe-129 polarization by off-resonant spin exchange optical pumping

    No full text
    A high power narrow line width (38 W, 0.09 nm full width at half maximum) external cavity diode laser is investigated for rubidium spin exchange optical pumping of Xe-129. This tunable photon source has a constant line width, independent of operating power or wavelength within a 1 nm tuning range. When using this laser, an increase in the Xe-129 nuclear polarization is observed when optically pumping at a lower wavelength than the measured Rb electron D-1 absorption. The exact detuning from D1 for the highest polarization is dependent upon the gas density. Furthermore, at high power and/or high Rb density, a reduction in the polarization occurs at the optimum wavelength as previously reported in spin exchange optical pumping studies of He-3 which is consistent with high absorption close to the cell front face. These results are encouraging for moderate high throughput polarization of Xe-129 in the midpressure range of (0.5-2.0 amagat). (C) 2010 American Institute of Physics. [doi: 10.1063/1.3478707

    Enhancement of Xe-129 polarization by off-resonant spin exchange optical pumping

    Get PDF
    A high power narrow line width (38 W, 0.09 nm full width at half maximum) external cavity diode laser is investigated for rubidium spin exchange optical pumping of Xe-129. This tunable photon source has a constant line width, independent of operating power or wavelength within a 1 nm tuning range. When using this laser, an increase in the Xe-129 nuclear polarization is observed when optically pumping at a lower wavelength than the measured Rb electron D-1 absorption. The exact detuning from D1 for the highest polarization is dependent upon the gas density. Furthermore, at high power and/or high Rb density, a reduction in the polarization occurs at the optimum wavelength as previously reported in spin exchange optical pumping studies of He-3 which is consistent with high absorption close to the cell front face. These results are encouraging for moderate high throughput polarization of Xe-129 in the midpressure range of (0.5-2.0 amagat). (C) 2010 American Institute of Physics. [doi: 10.1063/1.3478707

    Compact spherical neutron polarimeter using high-T-c YBCO films

    Get PDF
    We describe a simple, compact device for spherical neutron polarimetry measurements at small neutron scattering angles. The device consists of a sample chamber with very low (<0.01 G) magnetic field flanked by regions within which the neutron polarization can be manipulated in a controlled manner. This allows any selected initial and final polarization direction of the neutrons to be obtained. We have constructed a prototype device using high-Tc superconducting films and mu-metal to isolate regions with different magnetic fields and tested device performance in transmission geometry. Finite-element methods were used to simulate the device’s field profile and these have been verified by experiment using a small solenoid as a test sample. Measurements are reported using both monochromatic and polychromatic neutron sources. The results show that the device is capable of extracting sample information and distinguishing small angular variations of the sample magnetic field. As a more realistic test, we present results on the characterization of a 10 μm thick Permalloy film in zero magnetic field, as well as its response to an external magnetic field

    Spin echo small angle neutron scattering using a continuously pumped He-3 neutron polarisation analyser

    Get PDF
    We present a new instrument for spin echo small angle neutron scattering (SESANS) developed at the Low Energy Neutron Source at Indiana University. A description of the various instrument components is given along with the performance of these components. At the heart of the instrument are a series of resistive coils to encode the neutron trajectory into the neutron polarisation. These are shown to work well over a broad range of neutron wavelengths. Neutron polarisation analysis is accomplished using a continuously operating neutron spin filter polarised by Rb spin-exchange optical pumping of 3He. We describe the performance of the analyser along with a study of the 3He polarisation stability and its implications for SESANS measurements. Scattering from silica Stöber particles is investigated and agrees with samples run on similar instruments

    Solar Magnetic Carpet I: Simulation of Synthetic Magnetograms

    Full text link
    This paper describes a new 2D model for the photospheric evolution of the magnetic carpet. It is the first in a series of papers working towards constructing a realistic 3D non-potential model for the interaction of small-scale solar magnetic fields. In the model, the basic evolution of the magnetic elements is governed by a supergranular flow profile. In addition, magnetic elements may evolve through the processes of emergence, cancellation, coalescence and fragmentation. Model parameters for the emergence of bipoles are based upon the results of observational studies. Using this model, several simulations are considered, where the range of flux with which bipoles may emerge is varied. In all cases the model quickly reaches a steady state where the rates of emergence and cancellation balance. Analysis of the resulting magnetic field shows that we reproduce observed quantities such as the flux distribution, mean field, cancellation rates, photospheric recycle time and a magnetic network. As expected, the simulation matches observations more closely when a larger, and consequently more realistic, range of emerging flux values is allowed (4e16 - 1e19 Mx). The model best reproduces the current observed properties of the magnetic carpet when we take the minimum absolute flux for emerging bipoles to be 4e16 Mx. In future, this 2D model will be used as an evolving photospheric boundary condition for 3D non-potential modeling.Comment: 33 pages, 16 figures, 5 gif movies included: movies may be viewed at http://www-solar.mcs.st-and.ac.uk/~karen/movies_paper1

    Exploring nanoscale structure in perovskite precursor solutions using neutron and light scattering

    Get PDF
    Tailoring the solution chemistry of metal halide perovskites requires a detailed understanding of precursor aggregation and coordination. In this work, we use various scattering techniques, including dynamic light scattering (DLS), small angle neutron scattering (SANS), and spin–echo SANS (SESANS) to probe the nanostructures from 1 nm to 10 μm within two different lead-halide perovskite solution inks (MAPbI3 and a triple-cation mixed-halide perovskite). We find that DLS can misrepresent the size distribution of the colloidal dispersion and use SANS/SESANS to confirm that these perovskite solutions are mostly comprised of 1–2 nm-sized particles. We further conclude that if there are larger colloids present, their concentration must be <0.005% of the total dispersion volume. With SANS, we apply a simple fitting model for two component microemulsions (Teubner–Strey), demonstrating this as a potential method to investigate the structure, chemical composition, and colloidal stability of perovskite solutions, and we here show that MAPbI3 solutions age more drastically than triple cation solutions

    Dynamics of Coronal Bright Points as seen by Sun Watcher using Active Pixel System detector and Image Processing (SWAP), Atmospheric Imaging Assembly AIA), and Helioseismic and Magnetic Imager (HMI)

    Full text link
    The \textit{Sun Watcher using Active Pixel system detector and Image Processing}(SWAP) on board the \textit{PRoject for OnBoard Autonomy\todash 2} (PROBA\todash 2) spacecraft provides images of the solar corona in EUV channel centered at 174 \AA. These data, together with \textit{Atmospheric Imaging Assembly} (AIA) and the \textit{Helioseismic and Magnetic Imager} (HMI) on board \textit{Solar Dynamics Observatory} (SDO), are used to study the dynamics of coronal bright points. The evolution of the magnetic polarities and associated changes in morphology are studied using magnetograms and multi-wavelength imaging. The morphology of the bright points seen in low-resolution SWAP images and high-resolution AIA images show different structures, whereas the intensity variations with time show similar trends in both SWAP 174 and AIA 171 channels. We observe that bright points are seen in EUV channels corresponding to a magnetic-flux of the order of 101810^{18} Mx. We find that there exists a good correlation between total emission from the bright point in several UV\todash EUV channels and total unsigned photospheric magnetic flux above certain thresholds. The bright points also show periodic brightenings and we have attempted to find the oscillation periods in bright points and their connection to magnetic flux changes. The observed periods are generally long (10\todash 25 minutes) and there is an indication that the intensity oscillations may be generated by repeated magnetic reconnection

    A Journey along the Extruder with Polystyrene:C60 Nanocomposites: Convergence of Feeding Formulations into a Similar Nanomorphology

    Get PDF
    We investigated the effect of the feeding formulation (premixed powders of pure components versus solvent-blended mixture) of polystyrene–C60 composites on the dispersion and reagglomeration phenomena developing along the barrel of a twin-screw extruder. The dispersion of C60 in the PS matrix is studied over different length scales using a combination of optical microscopy, spin-echo small-angle neutron scattering (SESANS), small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and wide-angle X-ray scattering (WAXS). When a solvent-blended mixture is used as the feeding formulation, the inlet material contains essentially molecularly dispersed C60 as revealed by the nanodomains with very small phase contrast. However, C60 reagglomeration occurs along the extruder, creating a morphology still containing only nanodomains but with much higher phase contrast. In the case of mixed powders, the material evolves from the initial macroscopic mixture of pure polystyrene and C60 into a composite simultaneously containing micro- and nanoaggregates of C60 as well as C60 molecularly dispersed in the matrix. Our results show that the two different initial feeding formulations with widely different initial morphologies converge along the extruder, through opposite morphological pathways, into a similar final nanomorphology which is dictated by the interplay between the thermodynamics of the system and the flow. Correlations between the morphological evolution along the extruder and the thermorheological properties of the composites are identified

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Liquid–liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent

    Get PDF
    Cyphochilus beetle scales are amongst the brightest structural whites in nature, being highly opacifying whilst extremely thin. However, the formation mechanism for the voided intra-scale structure is unknown. Here we report 3D x-ray nanotomography data for the voided chitin networks of intact white scales of Cyphochilus and Lepidiota stigma. Chitin-filling fractions are found to be 31 ± 2% for Cyphochilus and 34 ± 1% for Lepidiota stigma, indicating previous measurements overestimated their density. Optical simulations using finite-difference time domain for the chitin morphologies and simulated Cahn-Hilliard spinodal structures show excellent agreement. Reflectance curves spanning filling fraction of 5-95% for simulated spinodal structures, pinpoint optimal whiteness for 25% chitin filling. We make a simulacrum from a polymer undergoing a strong solvent quench, resulting in highly reflective (~94%) white films. In-situ X-ray scattering confirms the nanostructure is formed through spinodal decomposition phase separation. We conclude that the ultra-white beetle scale nanostructure is made via liquid–liquid phase separation
    corecore