1,284 research outputs found

    Urban growth drivers in a Europe of sticky people and implicit boundaries

    Get PDF
    We investigate urban GDP pc growth across the EU12 using data for functionally defined cities - rather than administrative regions. We test hypotheses on the role of human capital, EU integration and fragmentation of urban government and explore spatial dependence and mechanisms of spatial interaction. Results are acceptable on standard econometric tests without measures of spatial interaction but there is spatial dependence. If variables reflecting spatial adjustment are included, they are statistically significant and eliminate spatial dependence. Not only do the results now provide consistent estimates of parameters, they also support relevant theoretical insights and show national borders are still significant barriers to economic adjustment. People in Europe are sticky so it is unreasonable to assume spatial disparities will disappear. Our findings also imply that cities in Europe form national rather than a single continental system

    Can firms be both broad and deep? Exploring interdependencies between horizontal and vertical firm scope

    Get PDF
    Firms can be horizontally diversified, with considerable breadth, or vertically integrated, with great depth. This study explores how breadth and depth affect each other as influenced by capability requirements and coordination demands. Using construction industry data, we assess the interdependence between contractors’ portfolios of building types (horizontal scope) and the extent of integration of the activities needed to complete each project (vertical scope). We find that vertical and horizontal scope have a negative interdependency only when contractors face managerial constraints due to coordination challenges. Further, we show that this effect can be mitigated through organizational structures that centralize key functions. Our findings highlight the importance of coordination in the theory of the firm, as we link firm boundaries to managerial coordination and internal organization

    Ultrafast Optical Control of the Electronic Properties of ZrTe5ZrTe_5

    Get PDF
    We report on the temperature dependence of the ZrTe5ZrTe_5 electronic properties, studied at equilibrium and out of equilibrium, by means of time and angle resolved photoelectron spectroscopy. Our results unveil the dependence of the electronic band structure across the Fermi energy on the sample temperature. This finding is regarded as the dominant mechanism responsible for the anomalous resistivity observed at T* ∼\sim 160 K along with the change of the charge carrier character from holelike to electronlike. Having addressed these long-lasting questions, we prove the possibility to control, at the ultrashort time scale, both the binding energy and the quasiparticle lifetime of the valence band. These experimental evidences pave the way for optically controlling the thermoelectric and magnetoelectric transport properties of ZrTe5ZrTe_5

    Pore-scale mass and reactant transport in multiphase porous media flows

    Get PDF
    Reactive processes associated with multiphase flows play a significant role in mass transport in unsaturated porous media. For example, the effect of reactions on the solid matrix can affect the formation and stability of fingering instabilities associated with the invasion of a buoyant non-wetting fluid. In this study, we focus on the formation and stability of capillary channels of a buoyant non-wetting fluid (developed because of capillary instabilities) and their impact on the transport and distribution of a reactant in the porous medium. We use a combination of pore-scale numerical calculations based on a multiphase reactive lattice Boltzmann model (LBM) and scaling laws to quantify (i)the effect of dissolution on the preservation of capillary instabilities, (ii)the penetration depth of reaction beyond the dissolution/melting front, and (iii)the temporal and spatial distribution of dissolution/melting under different conditions (concentration of reactant in the non-wetting fluid, injection rate). Our results show that, even for tortuous non-wetting fluid channels, simple scaling laws assuming an axisymmetrical annular flow can explain (i)the exponential decay of reactant along capillary channels, (ii)the dependence of the penetration depth of reactant on a local Péclet number (using the non-wetting fluid velocity in the channel) and more qualitatively (iii)the importance of the melting/reaction efficiency on the stability of non-wetting fluid channels. Our numerical method allows us to study the feedbacks between the immiscible multiphase fluid flow and a dynamically evolving porous matrix (dissolution or melting) which is an essential component of reactive transport in porous medi

    Statistical methods for automated drug susceptibility testing: Bayesian minimum inhibitory concentration prediction from growth curves

    Get PDF
    Determination of the minimum inhibitory concentration (MIC) of a drug that prevents microbial growth is an important step for managing patients with infections. In this paper we present a novel probabilistic approach that accurately estimates MICs based on a panel of multiple curves reflecting features of bacterial growth. We develop a probabilistic model for determining whether a given dilution of an antimicrobial agent is the MIC given features of the growth curves over time. Because of the potentially large collection of features, we utilize Bayesian model selection to narrow the collection of predictors to the most important variables. In addition to point estimates of MICs, we are able to provide posterior probabilities that each dilution is the MIC based on the observed growth curves. The methods are easily automated and have been incorporated into the Becton--Dickinson PHOENIX automated susceptibility system that rapidly and accurately classifies the resistance of a large number of microorganisms in clinical samples. Over seventy-five studies to date have shown this new method provides improved estimation of MICs over existing approaches.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS217 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Ultrafast photodoping and effective Fermi-Dirac distribution of the Dirac particles in Bi2Se3

    Full text link
    We exploit time- and angle- resolved photoemission spectroscopy to determine the evolution of the out-of-equilibrium electronic structure of the topological insulator Bi2Se. The response of the Fermi-Dirac distribution to ultrashort IR laser pulses has been studied by modelling the dynamics of the hot electrons after optical excitation. We disentangle a large increase of the effective temperature T* from a shift of the chemical potential mu*, which is consequence of the ultrafast photodoping of the conduction band. The relaxation dynamics of T* and mu* are k-independent and these two quantities uniquely define the evolution of the excited charge population. We observe that the energy dependence of the non-equilibrium charge population is solely determined by the analytical form of the effective Fermi-Dirac distribution.Comment: 5 Pages, 3 Figure

    GENERALIZED LIQUID ASSOCIATION

    Get PDF
    The analysis of interactions among a group of genes is fundamental to fur- ther our understanding of their biological interactions in a cell. Several studies suggested that the co-expression relationship of two genes can be modulated by a third controller gene. These controller genes and the corresponding modulated co-expressed gene pairs are the subjects of interests in this study. This described \controller-modulated genes three-way interactions is referred as liquid association in the literature. Analysis of gene expression data has suggested that these interactions are present in many biological systems. To quantify the magnitude of liquid association for a given gene triplet, we proposed a statistical measure named generalized liquid association (GLA). To estimate the value of GLA given the data, we propose two approaches: the direct and the model-based estimation approach. For the model-based approach, we introduce the conditional normal model (CNM). This is a generalization of the tri-variate normal distribution that allows us to characterize means, variances, as well as liquid association structures. We provide an approach based on generalized estimation equations to estimate the parameters in the CNM. We validate the proposed approaches through simulation studies and illustrate them in experimental data analysis. We also compare them with the three-product-moment measure suggested by Li in various settings and discuss related computational issues

    Hubbard exciton revealed by time-domain optical spectroscopy

    Get PDF
    We use broadband ultra-fast pump-probe spectroscopy in the visible range to study the lowest excitations across the Mott-Hubbard gap in the orbitally ordered insulator YVO3. Separating thermal and non-thermal contributions to the optical transients, we show that the total spectral weight of the two lowest peaks is conserved, demonstrating that both excitations correspond to the same multiplet. The pump-induced transfer of spectral weight between the two peaks reveals that the low-energy one is a Hubbard exciton, i.e. a resonance or bound state between a doublon and a holon. Finally, we speculate that the pump-driven spin-disorder can be used to quantify the kinetic energy gain of the excitons in the ferromagnetic phase.Comment: 5 pages and 6 figures, 9 pages and 12 figures with additional material
    • …
    corecore