392 research outputs found

    Fixation du CO2 dans les blocs de béton à base de granulats recyclés

    Full text link
    A l’heure où l’industrie cimentière est majoritairement responsable de la production de CO2 dans le secteur de la construction, il s’avère utile de compenser cette production par un phénomène inverse: la captation du CO2. Ce processus d’absorption de CO2, appelé carbonatation, améliore certaines propriétés du béton lors de la conversion du dioxyde de carbone CO2 en carbonate de calcium CaCO3. Les préoccupations environnementales actuelles motivent l’étude de la carbonatation dans le but de maximiser l'absorption du dioxyde de carbone. Les granulats recyclés, produits à base de déchets de béton concassés mécaniquement, peuvent prendre place dans de nouvelles applications en béton. Ils peuvent remplacer les granulats naturels en tout ou en partie, épargnant ainsi l’extraction des matières premières naturelles. La combinaison des deux approches vise à élaborer un produit dont l’impact environnemental est réduit au minimum

    Trophic ecology of the seagrass-inhabiting footballer demoiselle <i>Chrysiptera annulata</i> (Peters, 1855); comparison with three other reef-associated damselfishes

    Get PDF
    Many damselfishes (Pomacentridae) are herbivorous or omnivorous with an important contribution from different kinds of algae in their diet. They display different levels of territoriality and farming behavior, from almost non territorial to monoculture farmers. In addition, a few species inhabit seagrass meadows but, presently, none can be considered as seagrass-eating specialists. The footballer demoiselle, Chrysiptera annulata, is found in the seagrass meadows on the reef flat of the Great Reef of Toliara (Madagascar, Mozambique Channel). In the light of this unusual habitat for a pomacentrid, this study aimed to answer three questions: 1) What is the diet of C. annulata? 2) Do the resources supporting this diet include seagrass? 3) Does its trophic niche overlap those of other sympatric damselfishes (Pomacentrus trilineatus, Chrysiptera unimaculata and Plectroglyphidodon lacrymatus) living in close association with macrophytes or eating algae? Stomach content examination and stable isotope analysis showed that the footballer demoiselle is not a seagrass consumer but is an omnivorous/herbivorous species heavily relying on algal resources and small invertebrates. SIAR, a stable isotope mixing model, indicated it assimilated large amounts of turf algae, and various benthic or planktonic invertebrates in lower proportions. SIBER metrics revealed that the isotopic niche of the footballer demoiselle partly overlaps that of its congener, C. unimaculata, but not those of P. trilineatusand P. lacrymatus. Trophic strategies of C. annulata differed both from farming species such as P. lacrymatus and from less territorial herbivores such as P. trilineatus. Its seagrass meadow habitat on the Great Reef of Toliara allows the conquest of an unusual habitat for damselfishes and could limit competition with C. unimaculata, a species displaying the same territorial behavior and the same isotopic niche but living on the reef itself

    Electrode Selection for Noninvasive Fetal Electrocardiogram Extraction using Mutual Information Criteria

    No full text
    International audienceBlind source separation (BSS) techniques have revealed to be promising approaches for the noninvasive extraction of fetal cardiac signals from maternal abdominal recordings. From previous studies, it is now believed that a carefully selected array of electrodes well-placed over the abdomen of a pregnant woman contains the required 'information' for BSS, to extract the complete fetal components. Based on this idea, previous works have involved array recording systems and sensor selection strategies based on the Mutual Information (MI) criterion. In this paper the previous works have been extended, by considering the 3-dimensional aspects of the cardiac electrical activity. The proposed method has been tested on simulated and real maternal abdominal recordings. The results show that the new sensor selection strategy together with the MI criterion, can be effectively used to select the channels containing the most 'information' concerning the fetal ECG components from an array of 72 recordings. The method is hence believed to be useful for the selection of the most informative channels in online applications, considering the different fetal positions and movements

    A transition between the hot and the ultra-hot Jupiter atmospheres

    Get PDF
    [Abridged] A key hypothesis in the field of exoplanet atmospheres is the trend of atmospheric thermal structure with planetary equilibrium temperature. We explore this trend and report here the first statistical detection of a transition in the near-infrared (NIR) atmospheric emission between hot and ultra-hot Jupiters. We measure this transition using secondary eclipse observations and interpret this phenomenon as changes in atmospheric properties, and more specifically in terms of transition from non-inverted to inverted thermal profiles. We examine a sample of 78 hot Jupiters with secondary eclipse measurements at 3.6 {\mu}m and 4.5 {\mu}m measured with Spitzer Infrared Array Camera (IRAC). We measure the deviation of the data from the blackbody, which we define as the difference between the observed 4.5 {\mu}m eclipse depth and that expected at this wavelength based on the brightness temperature measured at 3.6 {\mu}m. We study how the deviation between 3.6 and 4.5 {\mu}m changes with theoretical predictions with equilibrium temperature and incoming stellar irradiation. We reveal a clear transition in the observed emission spectra of the hot Jupiter population at 1660 +/- 100 K in the zero albedo, full redistribution equilibrium temperature. We find the hotter exoplanets have even hotter daysides at 4.5 {\mu}m compared to 3.6 {\mu}m, which manifests as an exponential increase in the emitted power of the planets with stellar insolation. We propose that the measured transition is a result of seeing carbon monoxide in emission due to the formation of temperature inversions in the atmospheres of the hottest planets. These thermal inversions could be caused by the presence of atomic and molecular species with high opacities in the optical and/or the lack of cooling species. We find that the population of hot Jupiters statistically disfavors high C/O planets (C/O>= 0.85).Comment: Accepted 11th May 202

    Transit spectrophotometry of the exoplanet HD 189733b II. New Spitzer observations at 3.6 μm

    Get PDF
    Context. We present a new primary transit observation of the hot-jupiter HD 189733b, obtained at 3.6 μm with the Infrared Array Camera (IRAC) onboard the Spitzer Space Telescope. Previous measurements at 3.6 microns suffered from strong systematics, and conclusions could hardly be obtained with confidence on the water detection by comparison of the 3.6 and 5.8 microns observations. Aims. We aim at constraining the atmospheric structure and composition of the planet and improving previously derived parameters. Methods. We use a high-S/NSpitzer photometric transit light curve to improve the precision of the near infrared radius of the planet at 3.6 μm. The observation has been performed using high-cadence time series integrated in the subarray mode. We are able to derive accurate system parameters, including planet-to-star radius ratio, impact parameter, scale of the system, and central time of the transit from the fits of the transit light curve. We compare the results with transmission spectroscopic models and with results from previous observations at the same wavelength. Results. We obtained the following system parameters of , , and at 3.6 μm. These measurements are three times more accurate than previous studies at this wavelength because they benefit from greater observational efficiency and less statistic and systematic errors. Nonetheless, we find that the radius ratio has to be corrected for stellar activity and present a method to do so using ground-based long-duration photometric follow-up in the V-band. The resulting planet-to-star radius ratio corrected for the stellar variability agrees with our previous measurement obtained in the same bandpass. We also discuss that water vapour could not be detected by a comparison of the planetary radius measured at 3.6 and 5.8 μm, because the radius measured at 3.6 μm is affected by absorption by other species, possibly Rayleigh scattering by haze

    Climate of an Ultra hot Jupiter: Spectroscopic phase curve of WASP-18b with HST/WFC3

    Get PDF
    We present the analysis of a full-orbit, spectroscopic phase curve of the ultra hot Jupiter WASP-18b, obtained with the Wide Field Camera 3 aboard the Hubble Space Telescope. We measure the planet's normalized day-night contrast as >0.96 in luminosity: the disk-integrated dayside emission from the planet is at 964+-25 ppm, corresponding to 2894+-30 K, and we place an upper limit on the nightside emission of <32ppm or 1430K at the 3-sigma level. We also find that the peak of the phase curve exhibits a small, but significant offset in brightness of 4.5+-0.5 degrees eastward. We compare the extracted phase curve and phase resolved spectra to 3D Global Circulation Models and find that broadly the data can be well reproduced by some of these models. We find from this comparison several constraints on the atmospheric properties of the planet. Firstly we find that we need efficient drag to explain the very inefficient day-night re-circulation observed. We demonstrate that this drag could be due to Lorentz-force drag by a magnetic field as weak as 10 Gauss. Secondly, we show that a high metallicity is not required to match the large day-night temperature contrast. In fact, the effect of metallicity on the phase curve is different from cooler gas-giant counterparts, due to the high-temperature chemistry in WASP-18b's atmosphere. Additionally, we compare the current UHJ spectroscopic phase curves, WASP-18b and WASP-103b, and show that these two planets provide a consistent picture with remarkable similarities in their measured and inferred properties. However, key differences in these properties, such as their brightness offsets and radius anomalies, suggest that UHJ could be used to separate between competing theories for the inflation of gas-giant planets.Comment: Accepted for publication in A&
    • …
    corecore