946 research outputs found
Message handling system concepts and services in a land mobile satellite system
A network architecture containing the capabilities offered by the Message Handling System (MHS) to the PRODAT Land Mobile Satellite System (LMSS) is described taking into account the constraints of a preexisting satellite system which is going to become operational. The mapping between MHS services and PRODAT requirements is also reported and shows that the supplied performance can be significantly enhanced to both fixed and mobile users. The impact of the insertion of additional features on the system structure, especially on the centralized control unit, are also addressed
Triggering the Formation of Halo Globular Clusters with Galaxy Outflows
We investigate the interactions of high-redshift galaxy outflows with
low-mass virialized (Tvir < 10,000K) clouds of primordial composition. While
atomic cooling allows star formation in larger primordial objects, such
"minihalos" are generally unable to form stars by themselves. However, the
large population of high-redshift starburst galaxies may have induced
widespread star formation in these objects, via shocks that caused intense
cooling both through nonequilibrium H2 formation and metal-line emission. Using
a simple analytic model, we show that the resulting star clusters naturally
reproduce three key features of the observed population of halo globular
clusters (GCs). First, the 10,000 K maximum virial temperature corresponds to
the ~ 10^6 solar mass upper limit on the stellar mass of GCs. Secondly, the
momentum imparted in such interactions is sufficient to strip the gas from its
associated dark matter halo, explaining why GCs do not reside in dark matter
potential wells. Finally, the mixing of ejected metals into the primordial gas
is able to explain the ~ 0.1 dex homogeneity of stellar metallicities within a
given GC, while at the same time allowing for a large spread in metallicity
between different clusters. To study this possibility in detail, we use a
simple 1D numerical model of turbulence transport to simulate mixing in
cloud-outflow interactions. We find that as the shock shears across the side of
the cloud, Kelvin-Helmholtz instabilities arise, which cause mixing of enriched
material into > 20% of the cloud. Such estimates ignore the likely presence of
large-scale vortices, however, which would further enhance turbulence
generation. Thus quantitative mixing predictions must await more detailed
numerical studies.Comment: 21 pages, 11 figures, Apj in pres
Electron quantum optics : partitioning electrons one by one
We have realized a quantum optics like Hanbury Brown and Twiss (HBT)
experiment by partitioning, on an electronic beam-splitter, single elementary
electronic excitations produced one by one by an on-demand emitter. We show
that the measurement of the output currents correlations in the HBT geometry
provides a direct counting, at the single charge level, of the elementary
excitations (electron/hole pairs) generated by the emitter at each cycle. We
observe the antibunching of low energy excitations emitted by the source with
thermal excitations of the Fermi sea already present in the input leads of the
splitter, which suppresses their contribution to the partition noise. This
effect is used to probe the energy distribution of the emitted wave-packets.Comment: 5 pages, 4 figure
Switching between dynamic states in intermediate-length Josephson junctions
The appearance of zero-field steps (ZFS’s) in the current-voltage characteristics of intermediate-length overlap-geometry Josephson tunnel junctions described by a perturbed sine-Gordon equation (PSGE) is associated with the growth of parametrically excited instabilities of the McCumber background curve (MCB). A linear stability analysis of a McCumber solution of the PSGE in the asymptotic linear region of the MCB and in the absence of magnetic field yields a Hill’s equation which predicts how the number, locations, and widths of the instability regions depend on the junction parameters. A numerical integration of the PSGE in terms of truncated series of time-dependent Fourier spatial modes verifies that the parametrically excited instabilities of the MCB evolve into the fluxon oscillations characteristic of the ZFS’s. An approximate analysis of the Fourier mode equations in the presence of a small magnetic field yields a field-dependent Hill’s equation which predicts that the major effect of such a field is to reduce the widths of the instability regions. Experimental measurements on Nb-NbxOy-Pb junctions of intermediate length, performed at different operating temperatures in order to vary the junction parameters and for various magnetic field values, verify the physical existence of switching from the MCB to the ZFS’s. Good qualitative, and in many cases quantitative, agreement between analytic, numerical, and experimental results is obtained
The Kinematics and Metallicity of the M31 Globular Cluster System
With the ultimate aim of distinguishing between various models describing the
formation of galaxy halos (e.g. radial or multi-phase collapse, random
mergers), we have completed a spectroscopic study of the globular cluster
system of M31. We present the results of deep, intermediate-resolution,
fibre-optic spectroscopy of several hundred of the M31 globular clusters using
the Wide Field Fibre Optic Spectrograph (WYFFOS) at the William Herschel
Telescope in La Palma, Canary Islands. These observations have yielded precise
radial velocities (+/-12 km/s) and metallicities (+/-0.26 dex) for over 200
members of the M31 globular cluster population out to a radius of 1.5 degrees
from the galaxy center. Many of these clusters have no previous published
radial velocity or [Fe/H] estimates, and the remainder typically represent
significant improvements over earlier determinations. We present analyses of
the spatial, kinematic and metal abundance properties of the M31 globular
clusters. We find that the abundance distribution of the cluster system is
consistent with a bimodal distribution with peaks at [Fe/H] = -1.4 and -0.5.
The metal-rich clusters demonstrate a centrally concentrated spatial
distribution with a high rotation amplitude, although this population does not
appear significantly flattened and is consistent with a bulge population. The
metal-poor clusters tend to be less spatially concentrated and are also found
to have a strong rotation signature.Comment: 33 pages, 20 figure
GPCR-OKB: the G protein coupled receptor oligomer knowledge base
Rapid expansion of available data about G Protein Coupled Receptor (GPCR) dimers/oligomers over the past few years requires an effective system to organize this information electronically. Based on an ontology derived from a community dialog involving colleagues using experimental and computational methodologies, we developed the GPCR-Oligomerization Knowledge Base (GPCR-OKB). GPCR-OKB is a system that supports browsing and searching for GPCR oligomer data. Such data were manually derived from the literature. While focused on GPCR oligomers, GPCR-OKB is seamlessly connected to GPCRDB, facilitating the correlation of information about GPCR protomers and oligomers
Exoplanet phase curves: observations and theory
Phase curves are the best technique to probe the three dimensional structure
of exoplanets' atmospheres. In this chapter we first review current exoplanets
phase curve observations and the particular challenges they face. We then
describe the different physical mechanisms shaping the atmospheric phase curves
of highly irradiated tidally locked exoplanets. Finally, we discuss the
potential for future missions to further advance our understanding of these new
worlds.Comment: Fig.5 has been updated. Table 1 and corresponding figures have been
updated with new values for WASP-103b and WASP-18b. Contains a table
sumarizing phase curve observation
Planform selection in two-layer Benard-Marangoni convection
Benard-Marangoni convection in a system of two superimposed liquids is
investigated theoretically. Extending previous studies the complete
hydrodynamics of both layers is treated and buoyancy is consistently taken into
account. The planform selection problem between rolls, squares and hexagons is
investigated by explicitly calculating the coefficients of an appropriate
amplitude equation from the parameters of the fluids. The results are compared
with recent experiments on two-layer systems in which squares at onset have
been reported.Comment: 17 pages, 7 figures, oscillatory instability included, typos
corrected, references adde
- …