275 research outputs found
Geometric Alignments of the Subgrid-Scale Force in the Atmospheric Boundary Layer
In recent years field experiments have been undertaken in the lower atmosphere to perform a priori tests of subgrid-scale (SGS) models for large-eddy simulations (LES). The experimental arrangements and data collected have facilitated studies of variables such as the filtered strain rate, SGS stress and dissipation, and the eddy viscosity coefficient. However, the experimental set-ups did not permit analysis of the divergence of the SGS stress (the SGS force vector), which is the term that enters directly in the LES momentum balance equations. Data from a field experiment (SGS2002) in the west desert of Utah, allows the calculation of the SGS force due to the unique 4Ă4 sonic anemometer array. The vector alignment of the SGS force is investigated under a range of atmospheric stabilities. The eddy viscosity model is likely aligned with the measured SGS force under near-neutral and unstable conditions, while its performance is unsatisfactory under stable condition
Flow over Hills: A Large-Eddy Simulation of the Bolund Case
Simulation of local atmospheric flows around complex topography is important for several applications in wind energy (short-term wind forecasting and turbine siting and control), local weather prediction in mountainous regions and avalanche risk assessment. However, atmospheric simulation around steep mountain topography remains challenging, and a number of different approaches are used to represent such topography in numerical models. The immersed boundary method (IBM) is particularly well-suited for efficient and numerically stable simulation of flow around steep terrain. It uses a homogenous grid and permits a fast meshing of the topography. Here, we use the IBM in conjunction with a large-eddy simulation (LES) and test it against two unique datasets. In the first comparison, the LES is used to reproduce experimental results from a wind-tunnel study of a smooth three-dimensional hill. In the second comparison, we simulate the wind field around the Bolund Hill, Denmark, and make direct comparisons with field measurements. Both cases show good agreement between the simulation results and the experimental data, with the largest disagreement observed near the surface. The source of error is investigated by performing additional simulations with a variety of spatial resolutions and surface roughness propertie
Similarity Scaling Over a Steep Alpine Slope
In this study, we investigate the validity of similarity scaling over a steep mountain slope (30-41 ). The results are based on eddy-covariance data collected during the Slope Experiment near La Fouly (SELF-2010); a field campaign conducted in a narrow valley of the Swiss Alps during summer 2010. The turbulent fluxes of heat and momentum are found to vary significantly with height in the first few metres above the inclined surface. These variations exceed by an order of magnitude the well-accepted maximum 10% required for the applicability of Monin-Obukhov similarity theory in the surface layer. This could be due to a surface layer that is too thin to be detected or to the presence of advective fluxes. It is shown that local scaling can be a useful tool in these cases when surface-layer theory breaks down. Under convective conditions and after removing the effects of self-correlation, the normalized standard deviations of slope-normal wind velocity, temperature and humidity scale relatively well with , where is the measurement height and the local Obukhov length. However, the horizontal velocity fluctuations are not correlated with under all stability regimes. The non-dimensional gradients of wind velocity and temperature are also investigated. For those, the local scaling appears inappropriate, particularly at night when shallow drainage flows prevail and lead to negative wind-speed gradients close to the surfac
The Effects of Building Representation and Clustering in Large-Eddy Simulations of Flows in Urban Canopies
We perform large-eddy simulations of neutral atmospheric boundary-layer flow over a cluster of buildings surrounded by relatively flat terrain. The first investigated question is the effect of the level of building detail that can be included in the numerical model, a topic not yet addressed by any previous study. The simplest representation is found to give similar results to more refined representations for the mean flow, but not for turbulence. The wind direction on the other hand is found to be important for both mean and turbulent parameters. As many suburban areas are characterised by the clustering of buildings and homes into small areas separated by surfaces of lower roughness, we look at the adjustment of the atmospheric surface layer as it flows from the smoother terrain to the built-up area. This transition has unexpected impacts on the flow; mainly, a zone of global backscatter (energy transfer from the turbulent eddies to the mean flow) is found at the upstream edge of the built-up are
Large Eddy Simulation study of a fully developed thermal wind-turbine array boundary layer
When wind turbines are arranged in large wind farms, their efficiency decreases significantly due to wake effects and to complex turbulence interactions with the atmospheric boundary layer (ABL) [1]. For large wind farms whose length exceeds the ABL height by over an order of magnitude, a âfully developedâ flow regime may be established [1, 2, 3]. In this asymptotic regime, the changes in the stream-wise direction are small compared to the more relevant vertical exchange mechanisms. Such a fully developed wind-turbine array boundary layer (WTABL) has recently been studied [2] using Large Eddy Simulations (LES) under neutral stability conditions. The simulations showed the existence of two log-laws, one above (characterized by: uhi â , zhi o ) and one below (ulo â , zlo o ) the wind turbine region. This enabled the development of more accurate parameterizations of the effective roughness scale for a wind farm. Now, a suite of Large Eddy Simulations, in which wind turbines are modeled as in [2] using the classical drag disk concept are performed, again in neutral conditions but also considering temperature. Figure 1 shows a schematic of the geometry of the simulation. The aim is to study the effects of different thermal ABL stratifications, and thus to study the efficiency and characteristics of large wind farms and the associated land-atmosphere interactions for realistic atmospheric flow regimes. Such studies help to unravel the physics involved in extensive aggregations of wind turbines, allowing us to design better wind farm arrangements. As a first step, temperature is treated in a passive mode, allowing us to focus the study on the influence of a large WFABL into the scalar fluxes. By considering various turbine loading factors, surface roughness values and different atmospheric stratifications, it is possible to analyze the influence of these parameters on the induced surface roughness, and the sensible heat roughness length. These last two parameters can be used to model wind turbine arrays in simulations of atmospheric dynamics at larger (regional and global) scales [4], where the coarse meshes used do not allow to account for the specifics of each wind turbine. Results from different sets of simulations are presented, for which also the corresponding effective roughness length-scales can be determined. The results also help our understanding of how wind turbines affect scalar transport processes in the turbine wakes. By using a simple drag disk approach for modeling the wind turbines, it is found that the surface heat flux inside the thermal wind-turbine array boundary layer is increased. This is the result of two competing effects: (1) a major increase on uâ,hi; (2) a smaller decrease due to lower uâ,lo near the ground
Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers
become larger, they begin to attain scales at which two-way interactions with the atmospheric boundary layer (ABL) must be taken into account. Several studies have shown that there is a quantifiable effect of wind farms on the local meteorology, mainly through changes in the land-atmosphere fluxes of heat and moisture. In particular, the observed trends suggest that wind farms increase fluxes at the surface and this could be due to increased turbulence in the wakes. Conversely, simulations and laboratory experiments show that underneath wind farms, the friction velocity is decreased due to extraction of momentum by the wind turbines, a factor that could decrease scalar fluxes at the surface. In order to study this issue in more detail, a suite of large eddy simulations of an infinite (fully developed) wind turbine array boundary layer, including scalar transport from the ground surface without stratification, is performed. Results show an overall increase in the scalar fluxes of about 10%â15% when wind turbines are present in the ABL, and that the increase does not strongly depend upon wind farm loading as described by the turbinesâ thrust coefficient and the wind turbines spacings. A single-column analysis including scalar transport shows that the presence of wind farms can be expected to increase slightly the scalar transport from the bottom surface and that this slight increase is due to a delicate balance between two strong opposing trends
- âŠ