39 research outputs found

    Put My Skills to Use? Understanding the Joint Effect of Job Security and Skill Utilization on Job Satisfaction Between Skilled Migrants and Australian Born Workers in Australia

    Get PDF
    The topic of skilled migrants has gained importance in the past decade as they are increasingly becoming one of the main drivers for labor supply in developed countries like Australia. Although there is research on skilled migrants, most have been studied from the perspectives of (un)employment, wage and over-education. Some evidence suggests that skilled migrants are often less satisfied with their job compared to their local counterparts, yet little is known about why these differences exist. Using a nationally representative sample of Australian workers, we examine how two important job characteristics, job security and skill utilization, exert their differential interaction effect on job satisfaction for skilled migrants and Australian born workers. We found a differential moderation effect between job security and skill utilization for skilled migrants and Australian born workers. For skilled migrants, high job security did not lead to positive reaction (i.e., job satisfaction), as this effect was dependent on their skill utilization; while such moderation effect was not present for Australian born workers. This study highlights the need to take a more fine-tuned approach by understanding target sample groups (e.g., skilled migrants) when study the relationship between key job characteristics and job satisfaction. Furthermore, it highlights the importance for organizations to revisit their human resource management strategies and policies to recognize the needs for enhancing skill utilization for skilled migrants

    Oxide ceramic femoral heads contribute to the oxidation of polyethylene liners in artificial hip joints

    No full text
    Experimental evidence demonstrates that a loss of stoichiometry at the surface of oxide bioceramic femoral heads enhances the oxidation rate of polyethylene acetabular liners in artificial hip joints. Contradicting the common notion that ceramics are bioinert, three independent experiments confirmed substantial chemical interactions between the ceramic femoral heads and their polyethylene counterparts. The experiments reported herein included hydrothermal tests, frictional tests, and hip-simulator experiments. It was discovered that oxide and non-oxide femoral heads differently affected the oxidation processes at the surface of the polyethylene liners, all other testing parameters being equal. Analytical data from X-ray photoelectron (XPS), cath-odoluminescence (CL), Fourier-transform infrared (FTIR), and Raman spectroscopies unequivocally and consistently showed that the oxidation rate of polyethylene liners was greater when coupled with oxide as opposed to non-oxide ceramic heads. XPS analyses of O-Al-O bond fractions at the surface of a zirconia-toughened alumina (ZTA) short-term (20 months in vivo) femoral heads retrieval showed a similar to 50% reduction in favor of oxygen vacancy O-Al-V-O and hydroxylated Al-O-H bonds. Off-stoichiometry drifts were confirmed in vitro under both static and dynamic conditions. They triggered oxidation and tangibly affected an advanced highly cross-linked sequentially irradiated and annealed ultra-high molecular weight polyethylene (UHMWPE) liner (increase in oxidation index up to Delta OI similar to 1.2 after 5 x 10(5) cycles under dynamic swing conditions). Second-generation UHMWPE liners infused with vitamin E were also affected by the free flow of oxygen from the oxide femoral heads, although to a lesser extent. The fundamental findings of this study, which were also confirmed on re-trievals, call for revised standards in material design and testing. Adopting these new criteria will provide an improved understanding of the importance of off-stoichiometry at the head/liner interface and may lead to significant extensions in artificial joint lifetimes
    corecore