4,829 research outputs found
On the origin of \gamma-ray emission in \eta\ Carina
\eta\ Car is the only colliding-wind binary for which high-energy \gamma\
rays are detected. Although the physical conditions in the shock region change
on timescales of hours to days, the variability seen at GeV energies is weak
and on significantly longer timescales. The \gamma-ray spectrum exhibits two
features that can be interpreted as emission from the shocks on either side of
the contact discontinuity. Here we report on the first time-dependent modelling
of the non-thermal emission in \eta\ Car. We find that emission from primary
electrons is likely not responsible for the \gamma-ray emission, but
accelerated protons interacting with the dense wind material can explain the
observations. In our model, efficient acceleration is required at both shocks,
with the primary side acting as a hadron calorimeter, whilst on the companion
side acceleration is limited by the flow time out of the system, resulting in
changing acceleration conditions. The system therefore represents a unique
laboratory for the exploration of hadronic particle acceleration in
non-relativistic shocks.Comment: 5 pages, 4 figures, 1 table, accepted for publication in MNRAS
Letter
Filling the Void: Hizbullah's State Building in Lebanon
Abstract Hizbullah is a militarised sub-state group that challenges Lebanon's authority by establishing a parallel power-structure within the state. This thesis argues that the failure of the Lebanese government to provide for its citizens, particularly the disenfranchised Shiite population, has allowed Hizbullah to fill the void of Lebanon's absent government by creating a parallel state-like structure. Hizbullah’s state building is driven by domestic politics, as it strives to “democratically” restructure the political system in its favour rather than take the state by force. Hizbullah occupies a political, social and military position within Lebanon that extends far beyond any traditional definition of a sub-state group. In analysing Hizbullah as a state-building movement, this thesis will shed light on the organisation’s autonomy, strength and objectives in Lebanon and also provide a holistic approach to further study of militarised sub-state groups. iiiN/ADepartment of Government and International Relation
Photo-response of the conductivity in functionalized pentacene compounds
We report the first investigation of the photo-response of the conductivity
of a new class of organic semiconductors based on functionalized pentacene.
These materials form high quality single crystals that exhibit a thermally
activated resistivity. Unlike pure pentacene, the functionalized derivatives
are readily soluble in acetone, and can be evaporated or spin-cast as thin
films for potential device applications. The electrical conductivity of the
single crystal materials is noticeably sensitive to ambient light changes. The
purpose, therefore, of the present study, is to determine the nature of the
photo-response in terms of carrier activation vs. heating effects, and also to
measure the dependence of the photo-response on photon energy. We describe a
new method, involving the temperature dependent photo-response, which allows an
unambiguous identification of the signature of heating effects in materials
with a thermally activated conductivity. We find strong evidence that the
photo-response in the materials investigated is predominantly a highly
localized heating mechanism. Wavelength dependent studies of the photo-response
reveal resonant features and cut-offs that indicate the photon energy
absorption is related to the electronic structure of the material.Comment: Preprint: 18 pages total,7 figure
Fluorides, orthodontics and demineralization: a systematic review
Objectives: To evaluate the effectiveness of fluoride in preventing white spot lesion (WSL) demineralization during orthodontic treatment and compare all modes of fluoride delivery.
Data sources: The search strategy for the review was carried out according to the standard Cochrane systematic review methodology. The following databases were searched for RCTs or CCTs: Cochrane Clinical Trials Register, Cochrane Oral Health Group Specialized Trials Register, MEDLINE and EMBASE. Inclusion and exclusion criteria were applied when considering studies to be included. Authors of trials were contacted for further data.
Data selection: The primary outcome of the review was the presence or absence of WSL by patient at the end of treatment. Secondary outcomes included any quantitative assessment of enamel mineral loss or lesion depth.
Data extraction: Six reviewers independently, in duplicate, extracted data, including an assessment of the methodological quality of each trial.
Data synthesis: Fifteen trials provided data for this review, although none fulfilled all the methodological quality assessment criteria. One study found that a daily NaF mouthrinse reduced the severity of demineralization surrounding an orthodontic appliance (lesion depth difference –70.0 µm; 95% CI –118.2 to –21.8 µm). One study found that use of a glass ionomer cement (GIC) for bracket bonding reduced the prevalence of WSL (Peto OR 0.35; 95% CI 0.15–0.84) compared with a composite resin. None of the studies fulfilled all of the methodological quality assessment criteria.
Conclusions: There is some evidence that the use of a daily NaF mouthrinse or a GIC for bonding brackets might reduce the occurrence and severity of WSL during orthodontic treatment. More high quality, clinical research is required into the different modes of delivering fluoride to the orthodontic patient
Non-Fermi-liquid behavior in nearly ferromagnetic metallic SrIrO3 single crystals
We report transport and thermodynamic properties of single-crystal SrIrO3 as
a function of temperature T and applied magnetic field H. We find that SrIrO3
is a non-Fermi-liquid metal near a ferromagnetic instability, as characterized
by the following properties: (1) small ordered moment but no evidence for
long-range order down to 1.7 K; (2) strongly enhanced magnetic susceptibility
that diverges as T or T1/2 at low temperatures, depending on the applied field;
(3) heat capacity C(T,H) ~ -Tlog T that is readily amplified by low applied
fields; (4) a strikingly large Wilson ratio at T< 4K; and (5) a T3/2-dependence
of electrical resistivity over the range 1.7 < T < 120 K. A phase diagram based
on the data implies SrIrO3 is a rare example of a stoichiometric oxide compound
that exhibits non-Fermi-liquid behavior near a quantum critical point (T = 0
and H = 0.23 T)
The bactericidal activity of glutaraldehyde-impregnated polyurethane
Although glutaraldehyde is known to be bactericidal in solution, its potential use to create novel antibacterial polymers suitable for use in healthcare environments has not been evaluated. Here, novel materials were prepared in which glutaraldehyde was either incorporated into polyurethane using a simple “swell-encapsulation-shrink” method (hereafter referred to as “glutaraldehyde-impregnated polyurethane”), or simply applied to the polymer surface (hereafter referred to as “glutaraldehyde-coated polyurethane”). The antibacterial activity of glutaraldehyde-impregnated and glutaraldehyde-coated polyurethane samples was tested against Escherichia coli and Staphylococcus aureus. Glutaraldehyde-impregnated polyurethane resulted in a 99.9% reduction in the numbers of E. coli within 2 h and a similar reduction of S. aureus within 1 h, whereas only a minimal reduction in bacterial numbers was observed when the biocide was bound to the polymer surface. After 15 days, however, the bactericidal activity of the impregnated material was substantially reduced presumably due to polymerization of glutaraldehyde. Thus, although glutaraldehyde retains antibacterial activity when impregnated into polyurethane, activity is not maintained for extended periods of time. Future work should examine the potential of chemical modification of glutaraldehyde and/or polyurethane to improve the useful lifespan of this novel antibacterial polymer
- …