34,791 research outputs found

    Retention of ductility in high-strength steels

    Get PDF
    To produce high strength alloy steel with retention of ductility, include tempering, cooling and subsequent tempering. Five parameters for optimum results are pretempering temperature, amount of strain, strain rate, temperature during strain, and retempering temperature

    Multipurpose binocular scanning apparatus

    Get PDF
    Optical gimballing apparatus directs narrow fields of view throughout solid angle approaching 4 pi steradians. Image rotation produced by scanning can be eliminated or altered by gear trains directly linked to the scanning drive assembly. It provides the basis for a binocular scanning capability

    Inelastic neutron scattering studies of methyl chloride synthesis over alumina

    Get PDF
    Not only is alumina the most widely used catalyst support material in the world, it is also an important catalyst in its own right. One major chemical process that uses alumina in this respect is the industrial production of methyl chloride. This is a large scale process (650 000 metric tons in 2010 in the United States), and a key feedstock in the production of silicones that are widely used as household sealants. In this Account, we show how, in partnership with conventional spectroscopic and reaction testing methods, inelastic neutron scattering (INS) spectroscopy can provide additional insight into the active sites present on the catalyst, as well as the intermediates present on the catalyst surface.<p></p> INS spectroscopy is a form of vibrational spectroscopy, where the spectral features are dominated by modes involving hydrogen. Because of this, most materials including alumina are largely transparent to neutrons. Advantageously, in this technique, the entire “mid-infrared”, 0–4000 cm<sup>–1</sup>, range is accessible; there is no cut-off at 1400 cm<sup>–1</sup> as in infrared spectroscopy. It is also straightforward to distinguish fundamental modes from overtones and combinations. <p></p> A key parameter in the catalyst’s activity is the surface acidity. In infrared spectroscopy of adsorbed pyridine, the shifts in the ring stretching modes are dependent on the strength of the acid site. However, there is a very limited spectral range available. We discuss how we can observe the low energy ring deformation modes of adsorbed pyridine by INS spectroscopy. These modes can undergo shifts that are as large as those seen with infrared inspectroscopy, potentially enabling finer discrimination between acid sites. <p></p> Surface hydroxyls play a key role in alumina catalysis, but in infrared spectroscopy, the presence of electrical anharmonicity complicates the interpretation of the O–H stretch region. In addition, the deformations lie below the infrared cut-off. Both of these limitations are irrelevant to INS spectroscopy, and all the modes are readily observable. When we add HCl to the catalyst surface, the acid causes changes in the spectra. We can then deduce both that the surface chlorination leads to enhanced Lewis acidity and that the hydroxyl group must be threefold coordinated. <p></p> When we react η-alumina with methanol, the catalyst forms a chemisorbed methoxy species. Infrared spectroscopy clearly shows its presence but also indicates the possible coexistence of a second species. Because of INS spectroscopy’s ability to discriminate between fundamental modes and combinations, we were able to unambiguously show that there is a single intermediate present on the surface of the active catalyst. This work represents a clear example where an understanding of the chemistry at the molecular level can help rationalize improvements in a large scale industrial process with both financial and environmental benefits. <p></p&gt

    A review of the influence of physical condition parameters on a typical aerospace stress effect: Decompression sickness

    Get PDF
    The study examines data on episodes of decompression sickness, particularly from recent Navy work in which the event occurred under multiple stress conditions, to determine the extent to which decompression sickness might be predicted on the basis of personal characteristics such as age, weight, and physical condition. Such information should ultimately be useful for establishing medical selection criteria to screen individuals prior to participation inactivities involving extensive changes in ambient pressure, including those encountered in space operations. The main conclusions were as follows. There is a definite and positive relationship between increasing age and weight and the likelihood of decompression sickness. However, for predictive purposes, the relationship is low. To reduce the risk of bends, particularly for older individuals, strenuous exercise should be avoided immediately after ambient pressure changes. Temperatures should be kept at the low end of the comfort zone. For space activities, pressure changes of over 6-7 psi should be avoided. Prospective participants in future missions such as the Space Shuttle should not be excluded on the basis of age, certainly to age 60, if their general condition is reasonably good and they are not grossly obese. (Modified author abstract

    Development of tests for measurement of primary perceptual-motor performance

    Get PDF
    Tests for measuring primary perceptual-motor performance for assessing space environment effects on human performanc

    Non-gaussianities and the Stimulated creation of quanta in the inflationary universe

    Full text link
    Cosmological inflation generates a spectrum of density perturbations that can seed the cosmic structures we observe today. These perturbations are usually computed as the result of the gravitationally-induced spontaneous creation of perturbations from an initial vacuum state. In this paper, we compute the perturbations arising from gravitationally-induced stimulated creation when perturbations are already present in the initial state. The effect of these initial perturbations is not diluted by inflation and survives to its end, and beyond. We consider a generic statistical density operator ρ\rho describing an initial mixed state that includes probabilities for nonzero numbers of scalar perturbations to be present at early times during inflation. We analyze the primordial bispectrum for general configurations of the three different momentum vectors in its arguments. We find that the initial presence of quanta can significantly enhance non-gaussianities in the so-called squeezed limit. Our results show that an observation of non-gaussianities in the squeezed limit can occur for single-field inflation when the state in the very early inflationary universe is not the vacuum, but instead contains early-time perturbations. Valuable information about the initial state can then be obtained from observations of those non-gaussianities.Comment: 25 page

    Powered fire nozzle for fast penetration of structures: A concept

    Get PDF
    Nozzle has been proposed with tip that will punch through wall very quickly. It would allow extinguishing agent to be delivered inside closed structure in minimum amount of time. Two versions of nozzle have been conceived: one operated from hydraulic pressure source and one activated by explosive charge
    corecore