538 research outputs found

    Magnetohydrodynamics and Plasma Cosmology

    Full text link
    We study the linear magnetohydrodynamic (MHD) equations, both in the Newtonian and the general-relativistic limit, as regards a viscous magnetized fluid of finite conductivity and discuss instability criteria. In addition, we explore the excitation of cosmological perturbations in anisotropic spacetimes, in the presence of an ambient magnetic field. Acoustic, electromagnetic (e/m) and fast-magnetosonic modes, propagating normal to the magnetic field, can be excited, resulting in several implications of cosmological significance.Comment: 9 pages, RevTeX, To appear in the Proceedings of the Peyresq X Meeting, IJTP Conference Serie

    A Monolayer of Primary Colonic Epithelium Generated on a Scaffold with a Gradient of Stiffness for Drug Transport Studies

    Get PDF
    Animal models are frequently used for in vitro physiologic and drug transport studies of the colon, but there exists significant pressure to improve assay throughput as well as to achieve tighter control of experimental variables than can be achieved with animals. Thus, development of a primary in vitro colonic epithelium cultured as high resistance with transport protein expression and functional behavior similar to that of a native colonic would be of enormous value for pharmaceutical research. A collagen scaffold, in which the degree of collagen cross-linking was present as a gradient, was developed to support the proliferation of primary colonic cells. The gradient of cross-linking created a gradient in stiffness across the scaffold, enabling the scaffold to resist deformation by cells. mRNA expression and quantitative proteomic mass spectrometry of cells growing on these surfaces as a monolayer suggested that the transporters present were similar to those in vivo. Confluent monolayers acted as a barrier to small molecules so that drug transport studies were readily performed. Transport function was evaluated using atenolol (a substrate for passive paracellular transport), propranolol (a substrate for passive transcellular transport), rhodamine 123 (Rh123, a substrate for P-glycoprotein), and riboflavin (a substrate for solute carrier transporters). Atenolol was poorly transported with an apparent permeability (Papp) of < 5 × 10-7 cm s-1, while propranolol demonstrated a Papp of 9.69 × 10-6 cm s-1. Rh123 was transported in a luminal direction (Papp,efflux/Papp,influx = 7) and was blocked by verapamil, a known inhibitor of P-glycoprotein. Riboflavin was transported in a basal direction, and saturation of the transporter was observed at high riboflavin concentrations as occurs in vivo. It is anticipated that this platform of primary colonic epithelium will find utility in drug development and physiological studies, since the tissue possesses high integrity and active transporters and metabolism similar to that in vivo

    On numerical aspects of pseudo-complex powers in R^3

    Get PDF
    In this paper we consider a particularly important case of 3D monogenic polynomials that are isomorphic to the integer powers of one complex variable (called pseudo-complex powers or pseudo-complex polynomials, PCP). The construction of bases for spaces of monogenic polynomials in the framework of Clifford Analysis has been discussed by several authors and from different points of view. Here our main concern are numerical aspects of the implementation of PCP as bases of monogenic polynomials of homogeneous degree k. The representation of the well known Fueter polynomial basis by a particular PCP-basis is subject to a detailed analysis for showing the numerical effciency of the use of PCP. In this context a modiffcation of the Eisinberg-Fedele algorithm for inverting a Vandermonde matrix is presented.This work was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, the Research Centre of Mathematics of the University of Minho and the Portuguese Foundation for Science and Technology ("FCT - Fundacao para a Ciencia e a Tecnologia"), within projects PEst-OE/MAT/UI4106/2014 and PEstOE/MAT/UI0013/2014

    Electric current circuits in astrophysics

    Get PDF
    Cosmic magnetic structures have in common that they are anchored in a dynamo, that an external driver converts kinetic energy into internal magnetic energy, that this magnetic energy is transported as Poynting fl ux across the magnetically dominated structure, and that the magnetic energy is released in the form of particle acceleration, heating, bulk motion, MHD waves, and radiation. The investigation of the electric current system is particularly illuminating as to the course of events and the physics involved. We demonstrate this for the radio pulsar wind, the solar flare, and terrestrial magnetic storms

    Quantum Interference: From Kaons to Neutrinos (with Quantum Beats in between)

    Get PDF
    Using the vehicle of resolving an apparent paradox, a discussion of quantum interference is presented. The understanding of a number of different physical phenomena can be unified, in this context. These range from the neutral kaon system to massive neutrinos, not to mention quantum beats, Rydberg wave packets, and neutron gravity.Comment: 12 pages, LaTeX, 3 figure

    The Flare-energy Distributions Generated by Kink-unstable Ensembles of Zero-net-current Coronal Loops

    Full text link
    It has been proposed that the million degree temperature of the corona is due to the combined effect of barely-detectable energy releases, so called nanoflares, that occur throughout the solar atmosphere. Alas, the nanoflare density and brightness implied by this hypothesis means that conclusive verification is beyond present observational abilities. Nevertheless, we investigate the plausibility of the nanoflare hypothesis by constructing a magnetohydrodynamic (MHD) model that can derive the energy of a nanoflare from the nature of an ideal kink instability. The set of energy-releasing instabilities is captured by an instability threshold for linear kink modes. Each point on the threshold is associated with a unique energy release and so we can predict a distribution of nanoflare energies. When the linear instability threshold is crossed, the instability enters a nonlinear phase as it is driven by current sheet reconnection. As the ensuing flare erupts and declines, the field transitions to a lower energy state, which is modelled by relaxation theory, i.e., helicity is conserved and the ratio of current to field becomes invariant within the loop. We apply the model so that all the loops within an ensemble achieve instability followed by energy-releasing relaxation. The result is a nanoflare energy distribution. Furthermore, we produce different distributions by varying the loop aspect ratio, the nature of the path to instability taken by each loop and also the level of radial expansion that may accompany loop relaxation. The heating rate obtained is just sufficient for coronal heating. In addition, we also show that kink instability cannot be associated with a critical magnetic twist value for every point along the instability threshold

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
    corecore