29,746 research outputs found

    Direct coronal heating from dissipation of magnetic field

    Get PDF
    The visible corona of the Sun appears to be heated by direct dissipation of magnetic fields. The magnetic fields in the visible corona are tied at both ends to the photosphere where the active convection continually rotates and shuffles the footpoints in a random pattern. The twisting and wrapping of flux tubes about each other produce magnetic neutral sheets in a state of dynamical nonequilibrium such that the current sheets become increasingly concentrated with the passage of time. Dissipation of the high current densities takes place regardless of the high electrical conductivity of the fluid. The convection on the feet of the lines of force at the surface of the Sun goes directly (within a matter of 10 to 20 hours) into heat in the corona. The rate of doing work seems adequate to supply the necessary 10 to the 7th power ergs/square cm. sec for the active corona

    Cosmic Rays and Their Formation of a Galactic Halo

    Get PDF
    Interstellar gas-cosmic radiation relationship for inflation of galactic magnetic field and halo production around galax

    Nonsymmetric inflation of a magnetic dipole

    Get PDF
    Properties of nonsymmetric inflation of dipole magnetic field by ionized ga

    The kinetic properties of the galactic cosmic ray gas

    Get PDF
    Pressure and sound velocity determined for statistically isotropic homogeneous cosmic ray ga

    Heating of the stellar corona

    Get PDF
    The present state of development of the theory of coronal heating is summarized. Coronal heating is the general cause of stellar X-ray emission, and it is also the cause of stellar mass loss in most stars. Hence a quantitive theory of coronal heating is an essential part of X-ray astronomy, and the development of a correct theory of coronal heating should be a primary concern of X-ray astronomers. The magnetohydrodynamical effects involved in coronal heating are not without interest in their own right, representing phenomena largely unknown in the terrestrial laboratory. Until these effects can be evaluated and assembled into a comprehensive theory of coronal heating for at least one star, the interpretation of the X-ray emissions of all stars is a phenomenological study at best, based on arbitrary organization and display of X-ray luminosity against bolometric luminosity, rotation rate, etc. The sun provides the one opportunity to pursue the exotic physical effects that combine to heat a stellar corona

    An Initial Value Problem for Oscillations of the Interstellar Gas

    Get PDF
    Initial value problem for oscillations in interstellar ga

    Plasma Relaxation and Topological Aspects in Hall Magnetohydrodynamics

    Get PDF
    Parker's formulation of isotopological plasma relaxation process in magnetohydrodynamics (MHD) is extended to Hall MHD. The torsion coefficient alpha in the Hall MHD Beltrami condition turns out now to be proportional to the "potential vorticity." The Hall MHD Beltrami condition becomes equivalent to the "potential vorticity" conservation equation in two-dimensional (2D) hydrodynamics if the Hall MHD Lagrange multiplier beta is taken to be proportional to the "potential vorticity" as well. The winding pattern of the magnetic field lines in Hall MHD then appears to evolve in the same way as "potential vorticity" lines in 2D hydrodynamics

    The Generation of Magnetic Fields Through Driven Turbulence

    Full text link
    We have tested the ability of driven turbulence to generate magnetic field structure from a weak uniform field using three dimensional numerical simulations of incompressible turbulence. We used a pseudo-spectral code with a numerical resolution of up to 1443144^3 collocation points. We find that the magnetic fields are amplified through field line stretching at a rate proportional to the difference between the velocity and the magnetic field strength times a constant. Equipartition between the kinetic and magnetic energy densities occurs at a scale somewhat smaller than the kinetic energy peak. Above the equipartition scale the velocity structure is, as expected, nearly isotropic. The magnetic field structure at these scales is uncertain, but the field correlation function is very weak. At the equipartition scale the magnetic fields show only a moderate degree of anisotropy, so that the typical radius of curvature of field lines is comparable to the typical perpendicular scale for field reversal. In other words, there are few field reversals within eddies at the equipartition scale, and no fine-grained series of reversals at smaller scales. At scales below the equipartition scale, both velocity and magnetic structures are anisotropic; the eddies are stretched along the local magnetic field lines, and the magnetic energy dominates the kinetic energy on the same scale by a factor which increases at higher wavenumbers. We do not show a scale-free inertial range, but the power spectra are a function of resolution and/or the imposed viscosity and resistivity. Our results are consistent with the emergence of a scale-free inertial range at higher Reynolds numbers.Comment: 14 pages (8 NEW figures), ApJ, in press (July 20, 2000?
    • …
    corecore