144 research outputs found
Arbeitsgemeinschaft Gynäkologische Onkologie recommendations for the diagnosis and treatment of patients with early breast cancer : update 2023
Background: Each year the interdisciplinary Arbeitsgemeinschaft Gynäkologische Onkologie (AGO), German Gynecological Oncology Group Breast Committee on Diagnosis and Treatment of Breast Cancer provides updated state-of-the-art recommendations for early and metastatic breast cancer. Summary: The updated evidence-based treatment recommendation for early and metastatic breast cancer has been released in March 2023. Key Messages: This paper concisely captures the updated recommendations for early breast cancer chapter by chapter
Arbeitsgemeinschaft Gynäkologische Onkologie Recommendations for the Diagnosis and Treatment of Patients with Early Breast Cancer: Update 2023
Background: Each year the interdisciplinary Arbeitsgemeinschaft Gynäkologische Onkologie (AGO), German Gynecological Oncology Group Breast Committee on Diagnosis and Treatment of Breast Cancer provides updated state-of-the-art recommendations for early and metastatic breast cancer. Summary: The updated evidence-based treatment recommendation for early and metastatic breast cancer has been released in March 2023. Key Messages: This paper concisely captures the updated recommendations for early breast cancer chapter by chapter
AGO Recommendations for the Diagnosis and Treatment of Patients with Locally Advanced and Metastatic Breast Cancer: Update 2022
The Breast Committee of the Arbeitsgemeinschaft Gynakologische Onkologie (German Gynecological Oncology Group, AGO) presents the 2022 update of the evidence-based recommendations for the diagnosis and treatment of patients with locally advanced and metastatic breast cancer
AGO Recommendations for the surgical therapy of breast cancer: update 2022
The recommendations of the AGO Breast Committee on the surgical therapy of breast cancer were last updated in March 2022 (www.ago-online.de). Since surgical therapy is one of several partial steps in the treatment of breast cancer, extensive diagnostic and oncological expertise of a breast surgeon and good interdisciplinary cooperation with diagnostic radiologists is of great importance. The most important changes concern localization techniques, resection margins, axillary management in the neoadjuvant setting and the evaluation of the meshes in reconstructive surgery. Based on meta-analyses of randomized studies, the level of recommendation of an intraoperative breast ultrasound for the localization of non-palpable lesions was elevated to “++”. Thus, the technique is considered to be equivalent to wire localization, provided that it is a lesion which can be well represented by sonography, the surgeon has extensive experience in breast ultrasound and has access to a suitable ultrasound device during the operation. In invasive breast cancer, the aim is to reach negative resection margins (“no tumor on ink”), regardless of whether an extensive intraductal component is present or not. Oncoplastic operations can also replace a mastectomy in selected cases due to the large number of existing techniques, and are equivalent to segmental resection in terms of oncological safety at comparable rates of complications. Sentinel node excision is recommended for patients with cN0 status receiving neoadjuvant chemotherapy after completion of chemotherapy. Minimally invasive biopsy is recommended for initially suspect lymph nodes. After neoadjuvant chemotherapy, patients with initially 1 – 3 suspicious lymph nodes and a good response (ycN0) can receive the targeted axillary dissection and the axillary dissection as equivalent options
AGO recommendations for the surgical therapy of the axilla after neoadjuvant chemotherapy: 2021 Update
For many decades, the standard procedure to treat breast cancer included complete dissection of the axillary lymph nodes. The aim was to determine histological node status, which was then used as the basis for adjuvant therapy, and to ensure locoregional tumour control. In addition to the debate on how to optimise the therapeutic strategies of systemic treatment and radiotherapy, the current discussion focuses on improving surgical procedures to treat breast cancer. As neoadjuvant chemotherapy is becoming increasingly important, the surgical procedures used to treat breast cancer, whether they are breast surgery or axillary dissection, are changing. Based on the currently available data, carrying out SLNE prior to neoadjuvant chemotherapy is not recommended. In contrast, surgical axillary management after neoadjuvant chemotherapy is considered the procedure of choice for axillary staging and can range from SLNE to TAD and ALND. To reduce the rate of false negatives during surgical staging of the axilla in pN+(CNB) stage before NACT and ycN0 after NACT, targeted axillary dissection (TAD), the removal of > 2 SLNs (SLNE, no untargeted axillary sampling), immunohistochemistry to detect isolated tumour cells and micro-metastases, and marking positive lymph nodes before NACT should be the standard approach. This most recent update on surgical axillary management describes the significance of isolated tumour cells and micro-metastasis after neoadjuvant chemotherapy and the clinical consequences of low volume residual disease diagnosed using SLNE and TAD and provides an overview of this year's AGO recommendations for surgical management of the axilla during primary surgery and in relation to neoadjuvant chemotherapy
AGO Recommendations for the Diagnosis and Treatment of Patients with Locally Advanced and Metastatic Breast Cancer: Update 2023
The Breast Committee of the Arbeitsgemeinschaft Gynakologische Onkologie (German Gynecological Oncology Group, AGO) presents the 2023 update of the evidence-based recommendations for the diagnosis and treatment of patients with locally advanced and metastatic breast cancer (mBC)
Standard chemotherapy with or without bevacizumab for women with newly diagnosed ovarian cancer (ICON7): overall survival results of a phase 3 randomised trial
Background:
The ICON7 trial previously reported improved progression-free survival in women with ovarian cancer with the addition of bevacizumab to standard chemotherapy, with the greatest effect in patients at high risk of disease progression. We report the final overall survival results of the trial.
Methods:
ICON7 was an international, phase 3, open-label, randomised trial undertaken at 263 centres in 11 countries across Europe, Canada, Australia and New Zealand. Eligible adult women with newly diagnosed ovarian cancer that was either high-risk early-stage disease (International Federation of Gynecology and Obstetrics [FIGO] stage I–IIa, grade 3 or clear cell histology) or more advanced disease (FIGO stage IIb–IV), with an Eastern Cooperative Oncology Group performance status of 0–2, were enrolled and randomly assigned in a 1:1 ratio to standard chemotherapy (six 3-weekly cycles of intravenous carboplatin [AUC 5 or 6] and paclitaxel 175 mg/m2 of body surface area) or the same chemotherapy regimen plus bevacizumab 7·5 mg per kg bodyweight intravenously every 3 weeks, given concurrently and continued with up to 12 further 3-weekly cycles of maintenance therapy. Randomisation was done by a minimisation algorithm stratified by FIGO stage, residual disease, interval between surgery and chemotherapy, and Gynecologic Cancer InterGroup group. The primary endpoint was progression-free survival; the study was also powered to detect a difference in overall survival. Analysis was by intention to treat. This trial is registered as an International Standard Randomised Controlled Trial, number ISRCTN91273375.
Findings:
Between Dec 18, 2006, and Feb 16, 2009, 1528 women were enrolled and randomly assigned to receive chemotherapy (n=764) or chemotherapy plus bevacizumab (n=764). Median follow-up at the end of the trial on March 31, 2013, was 48·9 months (IQR 26·6–56·2), at which point 714 patients had died (352 in the chemotherapy group and 362 in the bevacizumab group). Our results showed evidence of non-proportional hazards, so we used the difference in restricted mean survival time as the primary estimate of effect. No overall survival benefit of bevacizumab was recorded (restricted mean survival time 44·6 months [95% CI 43·2–45·9] in the standard chemotherapy group vs 45·5 months [44·2–46·7] in the bevacizumab group; log-rank p=0·85). In an exploratory analysis of a predefined subgroup of 502 patients with poor prognosis disease, 332 (66%) died (174 in the standard chemotherapy group and 158 in the bevacizumab group), and a significant difference in overall survival was noted between women who received bevacizumab plus chemotherapy and those who received chemotherapy alone (restricted mean survival time 34·5 months [95% CI 32·0–37·0] with standard chemotherapy vs 39·3 months [37·0–41·7] with bevacizumab; log-rank p=0·03). However, in non-high-risk patients, the restricted mean survival time did not differ significantly between the two treatment groups (49·7 months [95% CI 48·3–51·1]) in the standard chemotherapy group vs 48·4 months [47·0–49·9] in the bevacizumab group; p=0·20). An updated analysis of progression-free survival showed no difference between treatment groups. During extended follow-up, one further treatment-related grade 3 event (gastrointestinal fistula in a bevacizumab-treated patient), three grade 2 treatment-related events (cardiac failure, sarcoidosis, and foot fracture, all in bevacizumab-treated patients), and one grade 1 treatment-related event (vaginal haemorrhage, in a patient treated with standard chemotherapy) were reported.
Interpretation:
Bevacizumab, added to platinum-based chemotherapy, did not increase overall survival in the study population as a whole. However, an overall survival benefit was recorded in poor-prognosis patients, which is concordant with the progression-free survival results from ICON7 and GOG-218, and provides further evidence towards the optimum use of bevacizumab in the treatment of ovarian cancer.
Funding:
The National Institute for Health Research through the UK National Cancer Research Network, the Medical Research Council, and Roche
Age- and Tumor Subtype-Specific Breast Cancer Risk Estimates for CHEK2*1100delC Carriers.
PURPOSE: CHEK2*1100delC is a well-established breast cancer risk variant that is most prevalent in European populations; however, there are limited data on risk of breast cancer by age and tumor subtype, which limits its usefulness in breast cancer risk prediction. We aimed to generate tumor subtype- and age-specific risk estimates by using data from the Breast Cancer Association Consortium, including 44,777 patients with breast cancer and 42,997 controls from 33 studies genotyped for CHEK2*1100delC. PATIENTS AND METHODS: CHEK2*1100delC genotyping was mostly done by a custom Taqman assay. Breast cancer odds ratios (ORs) for CHEK2*1100delC carriers versus noncarriers were estimated by using logistic regression and adjusted for study (categorical) and age. Main analyses included patients with invasive breast cancer from population- and hospital-based studies. RESULTS: Proportions of heterozygous CHEK2*1100delC carriers in controls, in patients with breast cancer from population- and hospital-based studies, and in patients with breast cancer from familial- and clinical genetics center-based studies were 0.5%, 1.3%, and 3.0%, respectively. The estimated OR for invasive breast cancer was 2.26 (95%CI, 1.90 to 2.69; P = 2.3 × 10(-20)). The OR was higher for estrogen receptor (ER)-positive disease (2.55 [95%CI, 2.10 to 3.10; P = 4.9 × 10(-21)]) than it was for ER-negative disease (1.32 [95%CI, 0.93 to 1.88; P = .12]; P interaction = 9.9 × 10(-4)). The OR significantly declined with attained age for breast cancer overall (P = .001) and for ER-positive tumors (P = .001). Estimated cumulative risks for development of ER-positive and ER-negative tumors by age 80 in CHEK2*1100delC carriers were 20% and 3%, respectively, compared with 9% and 2%, respectively, in the general population of the United Kingdom. CONCLUSION: These CHEK2*1100delC breast cancer risk estimates provide a basis for incorporating CHEK2*1100delC into breast cancer risk prediction models and into guidelines for intensified screening and follow-up.NIH
Genetic modifiers of CHEK2*1100delC-associated breast cancer risk
Purpose: CHEK2*1100delC is a founder variant in European populations that confers a two-to threefold increased risk of breast cancer (BC). Epidemiologic and family studies have suggested that the risk associated with CHEK2*1100delC is modified by other genetic factors in a multiplicative fashion. We have investigated this empirically using data from the Breast Cancer Association Consortium (BCAC). Methods: Using genotype data from 39,139 (624 1100delC carriers) BC patients and 40,063 (224) healthy controls from 32 BCAC studies, we analyzed the combined risk effects of CHEK2*1100delC and 77 common variants in terms of a polygenic risk score (PRS) and pairwise interaction. Results: The PRS conferred odds ratios (OR) of 1.59 (95% CI: 1.212.09) per standard deviation for BC for CHEK2*1100delC carriers and 1.58 (1.55-1.62) for noncarriers. No evidence of deviation from the multiplicative model was found. The OR for the highest quintile of the PRS was 2.03 (0.86-4.78) for CHEK2*1100delC carriers, placing them in the high risk category according to UK NICE guidelines. The OR for the lowest quintile was 0.52 (0.16-1.74), indicating a lifetime risk close to the population average. Conclusion: Our results confirm the multiplicative nature of risk effects conferred by CHEK2*1100delC and the common susceptibility variants. Furthermore, the PRS could identify carriers at a high lifetime risk for clinical actions.Peer reviewe
Recommended from our members
Incorporating progesterone receptor expression into the PREDICT breast prognostic model
Background: Predict Breast (www.predict.nhs.uk) is an online prognostication and treatment benefit tool for early invasive breast cancer. The aim of this study was to incorporate the prognostic effect of progesterone receptor (PR) status into a new version of PREDICT and to compare its performance to the current version (2.2).Method: The prognostic effect of PR status was based on the analysis of data from 45,088 European patients with breast cancer from 49 studies in the Breast Cancer Association Consortium. Cox proportional hazard models were used to estimate the hazard ratio for PR status. Data from a New Zealand study of 11,365 patients with early invasive breast cancer were used for external validation. Model calibration and discrimination were used to test the model performance.Results: Having a PR-positive tumour was associated with a 23% and 28% lower risk of dying from breast cancer for women with oestrogen receptor (ER)-negative and ER-positive breast cancer, respectively. The area under the ROC curve increased with the addition of PR status from 0.807 to 0.809 for patients with ER-negative tumours (p = 0.023) and from 0.898 to 0. 902 for patients with ER-positive tumours (p = 2.3 x 10(-6)) in the New Zealand cohort. Model calibration was modest with 940 observed deaths compared to 1151 predicted.Conclusion: The inclusion of the prognostic effect of PR status to PREDICT Breast has led to an improvement of model performance and more accurate absolute treatment benefit predic-tions for individual patients. Further studies should determine whether the baseline hazard function requires recalibration. (C) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe
- …