4,786 research outputs found
In vivo measurement of hemodynamic information in stenosed rat blood vessels using X-ray PIV
Measurements of the hemodynamic information of blood flows, especially wall shear stress (WSS), in animal models with circulatory vascular diseases (CVDs) are important to understand the pathological mechanism of CVDs. In this study, X-ray particle image velocimetry (PIV) with high spatial resolution was applied to obtain velocity field information in stenosed blood vessels with high WSS. 3D clips fabricated with a 3D printer were applied to the abdominal aorta of a rat cadaver to induce artificial stenosis in the real blood vessel of an animal model. The velocity and WSS information of blood flows in the stenosed vessel were obtained and compared at various stenosis severities. In vivo measurement was also conducted by fastening a stenotic clip on a live rat model through surgical intervention to reduce the flow rate to match the limited temporal resolution of the present X-ray PIV system. Further improvement of the temporal resolution of the system might be able to provide in vivo measurements of hemodynamic information from animal disease models under physiological conditions. The present results would be helpful for understanding the relation between hemodynamic characteristics and the pathological mechanism in animal CVD models.110Ysciescopu
Microfluidics for simultaneous quantification of platelet adhesion and blood viscosity
Platelet functions, including adhesion, activation, and aggregation have an influence on thrombosis and the progression of atherosclerosis. In the present study, a new microfluidic-based method is proposed to estimate platelet adhesion and blood viscosity simultaneously. Blood sample flows into an H-shaped microfluidic device with a peristaltic pump. Since platelet aggregation may be initiated by the compression of rotors inside the peristaltic pump, platelet aggregates may adhere to the H-shaped channel. Through correlation mapping, which visualizes decorrelation of the streaming blood flow, the area of adhered platelets (A(Platelet)) can be estimated without labeling platelets. The platelet function is estimated by determining the representative index I-A.T based on A(Platelet) and contact time. Blood viscosity is measured by monitoring the flow conditions in the one side channel of the H-shaped device. Based on the relation between interfacial width (W) and pressure ratio of sample flows to the reference, blood sample viscosity (mu) can be estimated by measuring W. Biophysical parameters (IA.T, mu) are compared for normal and diabetic rats using an ex vivo extracorporeal model. This microfluidic-based method can be used for evaluating variations in the platelet adhesion and blood viscosity of animal models with cardiovascular diseases under ex vivo conditions.119Ysciescopu
The effect of vanadium-carbon monolayer on the adsorption of tungsten and carbon atoms on tungsten-carbide (0001) surface
We report a first-principles calculations to study the effect of a vanadium-carbon (VC) monolayer on the adsorption process of tungsten (W) and carbon (C) atoms onto tungsten-carbide (WC) (0001) surface. The essential configuration for the study is a supercell of hexagonal WC with a (0001) surface. When adding the VC monolayer, we employed the lowest energy configuration by examining various configurations. The total energy of the system is computed as a function of the W or C adatoms’ height from the surface. The adsorption of a W and C adatom on a clean WC (0001) surface is compared with that of a W and C adatom on a WC (0001) surface with VC monolayer. The calculations show that the adsorption energy increased for both W and C adatoms in presence of the VC monolayer. Our results provide a fundamental understanding that can explain the experimentally observed phenomena of inhibited grain growth during sintering of WC or WC-Co powders in presence of VC
New Uropodina records and species from the Korean Peninsula (Acari: Mesostigmata)
Thirteen Mesostigmata species are recorded from the Korean Peninsula. Two of them Nenteria koreana and Leonardiella koreana spp. nov. are new to science, and further eleven species are recorded for the first time from the Korean Peninsula
Novel water filtration of saline water in the outermost layer of mangrove roots
The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na+ ions are filtered at the first sublayer of the outermost layer. The high blockage of Na+ ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na+ ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method.117Ysciescopu
Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment
Fabrication of superhydrophobic surfaces is an area of great interest because it can be applicable to various engineering fields. A simple, safe and inexpensive fabrication process is required to fabricate applicable superhydrophobic surfaces. In this study, we developed a facile fabrication method of nearly perfect superhydrophobic surfaces through plasma treatment with argon and oxygen gases. A polytetrafluoroethylene (PTFE) sheet was selected as a substrate material. We optimized the fabrication parameters to produce superhydrophobic surfaces of superior performance using the Taguchi method. The contact angle of the pristine PTFE surface is approximately 111.0�� �� 2.4��, with a sliding angle of 12.3�� �� 6.4��. After the plasma treatment, nano-sized spherical tips, which looked like crown-structures, were created. This PTFE sheet exhibits the maximum contact angle of 178.9��, with a sliding angle less than 1��. As a result, this superhydrophobic surface requires a small external force to detach water droplets dripped on the surface. The contact angle of the fabricated superhydrophobic surface is almost retained, even after performing an air-aging test for 80 days and a droplet impacting test for 6 h. This fabrication method can provide superb superhydrophobic surface using simple one-step plasma etching. ? 2017 The Author(s).114Ysciescopu
AdS and pp-wave D-particle superalgebras
We derive anticommutators of supercharges with a brane charge for a
D-particle in AdS(2) x S(2) and pp-wave backgrounds. A coset GL(2|2)/(GL(1))^4
and its Penrose limit are used with the supermatrix-valued coordinates for the
AdS and the pp-wave spaces respectively. The brane charges have position
dependence, and can be absorbed into bosonic generators by shift of momenta
which results in closure of the superalgebras.Comment: 15 page
A two-step learning approach for solving full and almost full cold start problems in dyadic prediction
Dyadic prediction methods operate on pairs of objects (dyads), aiming to
infer labels for out-of-sample dyads. We consider the full and almost full cold
start problem in dyadic prediction, a setting that occurs when both objects in
an out-of-sample dyad have not been observed during training, or if one of them
has been observed, but very few times. A popular approach for addressing this
problem is to train a model that makes predictions based on a pairwise feature
representation of the dyads, or, in case of kernel methods, based on a tensor
product pairwise kernel. As an alternative to such a kernel approach, we
introduce a novel two-step learning algorithm that borrows ideas from the
fields of pairwise learning and spectral filtering. We show theoretically that
the two-step method is very closely related to the tensor product kernel
approach, and experimentally that it yields a slightly better predictive
performance. Moreover, unlike existing tensor product kernel methods, the
two-step method allows closed-form solutions for training and parameter
selection via cross-validation estimates both in the full and almost full cold
start settings, making the approach much more efficient and straightforward to
implement
Carrier-mediated ferromagnetic ordering in Mn ion-implanted p+GaAs:C
Highly p-type GaAs:C was ion-implanted with Mn at differing doses to produce
Mn concentrations in the 1 - 5 at.% range. In comparison to LT-GaAs and
n+GaAs:Si samples implanted under the same conditions, transport and magnetic
properties show marked differences. Transport measurements show anomalies,
consistent with observed magnetic properties and with epi- LT-(Ga,Mn)As, as
well as the extraordinary Hall Effect up to the observed magnetic ordering
temperature (T_C). Mn ion-implanted p+GaAs:C with as-grown carrier
concentrations > 10^20 cm^-3 show remanent magnetization up to 280 K
Ab initio calculation of the KRb dipole moments
The relativistic configuration interaction valence bond method has been used
to calculate permanent and transition electric dipole moments of the KRb
heteronuclear molecule as a function of internuclear separation. The permanent
dipole moment of the ground state potential is found to be
0.30(2) at the equilibrium internuclear separation with excess negative
charge on the potassium atom. For the potential the dipole moment
is an order of magnitude smaller (1 Cm) In addition, we
calculate transition dipole moments between the two ground-state and
excited-state potentials that dissociate to the K(4s)+Rb(5p) limits. Using this
data we propose a way to produce singlet KRb molecules by a
two-photon Raman process starting from an ultracold mixture of doubly
spin-polarized ground state K and Rb atoms. This Raman process is only allowed
due to relativistic spin-orbit couplings and the absence of gerade/ungerade
selection rules in heteronuclear dimers.Comment: 16 pages, 7 figure
- …
