82,797 research outputs found
Genus Topology of the Cosmic Microwave Background from the WMAP 3-Year Data
We have independently measured the genus topology of the temperature
fluctuations in the cosmic microwave background seen in the Wilkinson Microwave
Anisotropy Probe (WMAP) 3-year data. A genus analysis of the WMAP data
indicates consistency with Gaussian random-phase initial conditions, as
predicted by standard inflation. We set 95% confidence limits on
non-linearities of -101 < f_{nl} < 107. We also find that the observed low l (l
<= 8) modes show a slight anti-correlation with the Galactic foreground, but
not exceeding 95% confidence, and that the topology defined by these modes is
consistent with that of a Gaussian random-phase distribution (within 95%
confidence).Comment: MNRAS LaTeX style (mn2e.cls), EPS and JPEG figure
Magnetic phenomena at and near nu =1/2 and 1/4: theory, experiment and interpretation
I show that the hamiltonian theory of Composite Fermions (CF) is capable of
yielding a unified description in fair agreement with recent experiments on
polarization P and relaxation rate 1/T_1 in quantum Hall states at filling nu =
p/(2ps+1), at and near nu = 1/2 and 1/4, at zero and nonzero temperatures. I
show how rotational invariance and two dimensionality can make the underlying
interacting theory behave like a free one in a limited context.Comment: Latex 4 pages, 2 figure
Nanoscale Prediction of Graphite Surface Erosion by Highly Energetic Gas - Molecular Dynamics Simulation -
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.In order to understand the fundamental essence in the erosion of graphite by hot gas molecules, in this study we investigate the mechanical properties of a single layer of graphite (e.g. graphene) and the bombardment of CO2 and H2O on graphene at high temperature by using extensive molecular dynamics (MD) simulations. The Reactive Empirical Bond Order (REBO) potential is employed to model the C-C bonds. The stress-strain curve shows that the stiffness of graphene decreases with increase in temperature. The strength of graphene at 2400 K is 60% less than the strength of graphene at 300 K. Also, we observe that the collision with CO2 and H2O provokes the bond breaking of C-C bonds in graphene at high temperature. The bombardment of gas molecules is carried out for different temperatures ranging between 300 K and 3000 K. Until 2400 K, both H2O and CO2 molecules are reflected back from the surface. However, at a critical temperature i.e., 2700 K and beyond, the bombardment of gas molecules breaks the C-C bond in the graphene. As the temperature increases, the graphene is destroyed quickly. This study shows that even the real gas molecules can induce the fracture of graphene at high temperature
Similarities in Dielectrophoretic and Electrophoretic Trap
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.In this study we present a universal theoretical formulation of the particle motions in electrophoretic and dielectrophoretic traps. It is extended from the well-known Mathieu equation based theories for Paul trap. The white noise random force model is utilized to form the Brownian motion of particle in the traps and the instantaneous dielectrophoretic force is employed rather than the time-averaged ponderomotive expression. The new approach enables many interesting properties of dielectrophoretic traps about stability and random motion. This study will be expected to provide a concrete protocol for the design of nanoscale traps which is essential in single molecule analysis
Inflation by non-minimal coupling
Inflationary scenarios based on simple non-minimal coupling and its
generalizations are studied. Generalizing the form of non-minimal coupling to
"K(phi)R" with an arbitrary function K(phi), we show that the flat potential
still is obtainable when V(phi)/K^2(phi) is asymptotically constant. Very
interestingly, if the ratio of the dimensionless self-coupling constant of the
inflaton field and the non-minimal coupling constant is small the cosmological
observables for general monomial cases are in good agreement with recent
observational data.Comment: 9 pages, 1 figur
A Non-supersymmetric Interpretation of the CDF e+e-\gamma\gamma + missing E_T Event
The \eegg event reported recently by the CDF Collaboration has been
interpreted as a signal of supersymmetry in several recent papers. In this
article, we report on an alternative non-supersymmetric interpretation of the
event using an extension of the standard model which contains new physics at
the electroweak scale that does not effect the existing precision electroweak
data. We extend the standard model by including an extra sequential generation
of fermions, heavy right-handed neutrinos for all generations and an extra
singly charged SU(2)-singlet Higgs boson. We discuss possible ways to
discriminate this from the standard supersymemtric interpretations.Comment: 7 pages, Latex, no figure
Optical spectroscopic observations of blazars and gamma-ray blazar candidates in the Sloan Digital Sky Survey Data Release Nine
We present an analysis of the optical spectra available in the Sloan Digital
Sky survey data release nine (SDSS DR9) for the blazars listed in the
ROMA-BZCAT and for the gamma-ray blazar candidates selected according to their
IR colors. First, we adopt a statistical approach based on MonteCarlo
simulations to find the optical counterparts of the blazarslisted in the
ROMA-BZCAT catalog. Then we crossmatched the SDSS spectroscopic catalog with
our selected samples of blazars and gamma-ray blazar candidates searching for
those with optical spectra available to classify our blazar-like sources and,
whenever possible, to confirm their redshifts. Our main objectives are
determining the classification of uncertain blazars listed in the ROMA-BZCAT
and discovering new gamma-ray blazars. For the ROMA-BZCAT sources we
investigated a sample of 84 blazars confirming the classification for 20 of
them and obtaining 18 new redshift estimates. For the gamma-ray blazars,
indicated as potential counterparts of unassociated Fermi sources or with
uncertain nature, we established the blazar-like nature of 8 out the 27 sources
analyzed and confirmed 14 classifications.Comment: 7 pages, 2 figures, 4 tables, AJ published in 2014 (pre-proof
version
- …