372 research outputs found

    Light Element Abundance Patterns in the Orion Association: I) HST Observations of Boron in G-dwarfs

    Get PDF
    The boron abundances for two young solar-type members of the Orion association, BD -6 1250 and HD 294297, are derived from HST STIS spectra of the B I transition at 2496.771 A. The best-fit boron abundances for the target stars are 0.13 and 0.44 dex lower than the solar meteoritic value of log e(B)=2.78. An anticorrelation of boron and oxygen is found for Orion when these results are added to previous abundances obtained for 4 B-type stars and the G-type star BD -5 1317. An analysis of the uncertainties in the abundance calculations indicates that the observed anticorrelation is probably real. The B versus O relation observed in the Orion association does not follow the positive correlation of boron versus oxygen which is observed for the field stars with roughly solar metallicity. The observed anticorrelation can be accounted for by a simple model in which two poorly mixed components of gas (supernova ejecta and boron-enriched ambient medium) contribute to the new stars that form within the lifetime of the association. This model predicts an anticorrelation for Be as well, at least as strong as for boron.Comment: 16 pages + 1 table + 7 figures, accepted for publication in Ap

    Cosmic Ray Production of Lithium-6 by Structure Formation Shocks in the Early Milky Way: A Fossil Record of Dissipative Processes during Galaxy Formation

    Full text link
    While the abundances of Be and B observed in metal-poor halo stars are well explained as resulting from spallation of CNO-enriched cosmic rays (CRs) accelerated by supernova shocks, accounting for the observed 6^6Li in such stars with supernova CRs is more problematic. Here we propose that gravitational shocks induced by infalling and merging sub-Galactic clumps during hierarchical structure formation of the Galaxy should dissipate enough energy at early epochs, and CRs accelerated by such shocks can provide a natural explanation of the observed 6^6Li. In clear constrast to supernovae, structure formation shocks do not eject freshly synthesized CNO nor Fe, so that the only effective production channel at low metallicity is α−α\alpha-\alpha fusion, capable of generating sufficient 6^6Li with no accompanying Be or B and no direct correspondence with Fe. Correlations between the 6^6Li abundance and the kinematic properties of the halo stars may also be expected in this scenario. Further, more extensive observations of 6^6Li in metal-poor halo stars, e.g. by the Subaru HDS or VLT/UVES, may offer us an invaluable fossil record of dissipative dynamical processes which occurred during the formation of our Galaxy.Comment: Ap.J. in press; 6 pages, 1 figur

    Detecting gamma-ray bursts with the Pierre Auger Observatory using the single particle technique

    Full text link
    During the past ten years, gamma-ray bursts (GRB) have been extensively studied in the keV-MeV energy range but the high energy emission still remain mysterious. Ground based observatories have the possibility to investigate energy range around one GeV using the "single particle technique". The aim of the present study is to investigate the capability of the Pierre Auger Observatory to detect the high energy emission of GRBs with such a technique. According to the detector response to photon showers around one GeV, and making reasonable assumptions about the high energy emission of GRBs, we show that the Pierre Auger Observatory is a competitive instrument for this technique, and that water tanks are very promising detectors for the single particle technique.Comment: 4 pages, 2 figures, to appear in the 29th ICRC conference (Pune, India) proceeding

    Light Element Evolution and Cosmic Ray Energetics

    Get PDF
    Using cosmic-ray energetics as a discriminator, we investigate evolutionary models of LiBeB. We employ a Monte Carlo code which incorporates the delayed mixing into the ISM both of the synthesized Fe, due to its incorporation into high velocity dust grains, and of the cosmic-ray produced LiBeB, due to the transport of the cosmic rays. We normalize the LiBeB production to the integral energy imparted to cosmic rays per supernova. Models in which the cosmic rays are accelerated mainly out of the average ISM significantly under predict the measured Be abundance of the early Galaxy, the increase in [O/Fe] with decreasing [Fe/H] notwithstanding. We suggest that this increase could be due to the delayed mixing of the Fe. But, if the cosmic-ray metals are accelerated out of supernova ejecta enriched superbubbles, the measured Be abundances are consistent with a cosmic-ray acceleration efficiency that is in very good agreement with the current epoch data. We also find that neither the above cosmic-ray origin models nor a model employing low energy cosmic rays originating from the supernovae of only very massive progenitors can account for the 6^6Li data at values of [Fe/H] below −-2.Comment: latex 19 pages, 2 tables, 10 eps figures, uses aastex.cls natbib.sty Submitted to the Astrophysical Journa

    Galactic Cosmic Rays from Superbubbles and the Abundances of Lithium, Beryllium, and Boron

    Get PDF
    In this article we study the galactic evolution of the LiBeB elements within the framework of a detailed model of the chemical evolution of the Galaxy that includes galactic cosmic ray nucleosynthesis by particles accelerated in superbubbles. The chemical composition of the superbubble consists of varying proportions of ISM and freshly supernova synthesized material. The observational trends of 6 LiBeB evolution are nicely reproduced by models in which GCR come from a mixture of 25% of supernova material with 75% of ISM, except for 6 Li, for which maybe an extra source is required at low metallicities. To account for 7 Li evolution several additional sources have been considered (neutrino-induced nucleosynthesis, nova outbursts, C-stars). The model fulfills the energetic requirements for GCR acceleration.Comment: 25 pages, 9 figures. Accepted for publication in the Astrophysical Journa

    Testing Spallation Processes With Beryllium and Boron

    Get PDF
    The nucleosynthesis of Be and B by spallation processes provides unique insight into the origin of cosmic rays. Namely, different spallation schemes predict sharply different trends for the growth of LiBeB abundances with respect to oxygen. ``Primary'' mechanisms predict BeB ∝\propto O, and are well motivated by the data if O/Fe is constant at low metallicity. In contrast, ``secondary'' mechanisms predict BeB ∝\propto O2^2 and are consistent with the data if O/Fe increases towards low metallicity as some recent data suggest. Clearly, any primary mechanism, if operative, will dominate early in the history of the Galaxy. In this paper, we fit the BeB data to a two-component scheme which includes both primary and secondary trends. In this way, the data can be used to probe the period in which primary mechanisms are effective. We analyze the data using consistent stellar atmospheric parameters based on Balmer line data and the continuum infrared flux. Results depend sensitively on Pop II O abundances and, unfortunately, on the choice of stellar parameters. When using recent results which show O/Fe increasing toward lower metallicity, a two-component Be-O fits indicates that primary and secondary components contribute equally at [O/H]eq_{eq} = -1.8 for Balmer line data; and [O/H]eq_{eq} = -1.4 to -1.8 for IRFM. We apply these constraints to recent models for LiBeB origin. The Balmer line data does not show any evidence for primary production. On the other hand, the IRFM data does indicate a preference for a two-component model, such as a combination of standard GCR and metal-enriched particles accelerated in superbubbles. These conclusions rely on a detailed understanding of the abundance data including systematic effects which may alter the derived O-Fe and BeB-Fe relations.Comment: 40 pages including 11 ps figures. Written in AASTe

    An Ultra-High-Resolution Survey of the Interstellar ^7Li-to-^6Li Isotope Ratio in the Solar Neighborhood

    Get PDF
    In an effort to probe the extent of variations in the interstellar ^7Li/^6Li ratio seen previously, ultra-high-resolution (R ~ 360,000), high signal-to-noise spectra of stars in the Perseus OB2 and Scorpius OB2 Associations were obtained. These measurements confirm our earlier findings of an interstellar ^7Li/^6Li ratio of about 2 toward o Per, the value predicted from models of Galactic cosmic ray spallation reactions. Observations of other nearby stars yield limits consistent with the isotopic ratio ~ 12 seen in carbonaceous chondrite meteorites. If this ratio originally represented the gas toward o Per, then to decrease the original isotope ratio to its current value an order of magnitude increase in the Li abundance is expected, but is not seen. The elemental K/Li ratio is not unusual, although Li and K are formed via different nucleosynthetic pathways. Several proposals to account for the low ^7Li/^6Li ratio were considered, but none seems satisfactory. Analysis of the Li and K abundances from our survey highlighted two sight lines where depletion effects are prevalent. There is evidence for enhanced depletion toward X Per, since both abundances are lower by a factor of 4 when compared to other sight lines. Moreover, a smaller Li/H abundance is observed toward 20 Aql, but the K/H abundance is normal, suggesting enhanced Li depletion (relative to K) in this direction. Our results suggest that the ^7Li/^6Li ratio has not changed significantly during the last 4.5 billion years and that a ratio ~ 12 represents most gas in the solar neighborhood. In addition, there appears to be a constant stellar contribution of ^7Li, indicating that one or two processes dominate its production in the Galaxy.Comment: 54 pages, accepted for publication in the Astrophysical Journa

    Small Scale Anisotropy Predictions for the Auger Observatory

    Full text link
    We study the small scale anisotropy signal expected at the Pierre Auger Observatory in the next 1, 5, 10, and 15 years of operation, from sources of ultra-high energy (UHE) protons. We numerically propagate UHE protons over cosmological distances using an injection spectrum and normalization that fits current data up to \sim 10^{20}\eV. We characterize possible sources of ultra-high energy cosmic rays (UHECRs) by their mean density in the local Universe, ρˉ=10−r\bar{\rho} = 10^{-r} Mpc−3^{-3}, with rr between 3 and 6. These densities span a wide range of extragalactic sites for UHECR sources, from common to rare galaxies or even clusters of galaxies. We simulate 100 realizations for each model and calculate the two point correlation function for events with energies above 4 \times 10^{19}\eV and above 10^{20}\eV, as specialized to the case of the Auger telescope. We find that for r\ga 4, Auger should be able to detect small scale anisotropies in the near future. Distinguishing between different source densities based on cosmic ray data alone will be more challenging than detecting a departure from isotropy and is likely to require larger statistics of events. Combining the angular distribution studies with the spectral shape around the GZK feature will also help distinguish between different source scenarios.Comment: 15 pages, 6 figures, 6 tables, submitted to JCA

    POEMMA: Probe Of Extreme Multi-Messenger Astrophysics

    Get PDF
    The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) mission is being designed to establish charged-particle astronomy with ultra-high energy cosmic rays (UHECRs) and to observe cosmogenic tau neutrinos (CTNs). The study of UHECRs and CTNs from space will yield orders-of-magnitude increase in statistics of observed UHECRs at the highest energies, and the observation of the cosmogenic flux of neutrinos for a range of UHECR models. These observations should solve the long-standing puzzle of the origin of the highest energy particles ever observed, providing a new window onto the most energetic environments and events in the Universe, while studying particle interactions well beyond accelerator energies. The discovery of CTNs will help solve the puzzle of the origin of UHECRs and begin a new field of Astroparticle Physics with the study of neutrino properties at ultra-high energies.Comment: 8 pages, in the Proceedings of the 35th International Cosmic Ray Conference, ICRC217, Busan, Kore

    Transport of Cosmic Rays in Chaotic Magnetic Fields

    Get PDF
    The transport of charged particles in disorganised magnetic fields is an important issue which concerns the propagation of cosmic rays of all energies in a variety of astrophysical environments, such as the interplanetary, interstellar and even extra-galactic media, as well as the efficiency of Fermi acceleration processes. We have performed detailed numerical experiments using Monte-Carlo simulations of particle propagation in stochastic magnetic fields in order to measure the parallel and transverse spatial diffusion coefficients and the pitch angle scattering time as a function of rigidity and strength of the turbulent magnetic component. We confirm the extrapolation to high turbulence levels of the scaling predicted by the quasi-linear approximation for the scattering frequency and parallel diffusion coefficient at low rigidity. We show that the widely used Bohm diffusion coefficient does not provide a satisfactory approximation to diffusion even in the extreme case where the mean field vanishes. We find that diffusion also takes place for particles with Larmor radii larger than the coherence length of the turbulence. We argue that transverse diffusion is much more effective than predicted by the quasi-linear approximation, and appears compatible with chaotic magnetic diffusion of the field lines. We provide numerical estimates of the Kolmogorov length and magnetic line diffusion coefficient as a function of the level of turbulence. Finally we comment on applications of our results to astrophysical turbulence and the acceleration of high energy cosmic rays in supernovae remnants, in super-bubbles, and in jets and hot spots of powerful radio-galaxies.Comment: To be published in Physical Review D, 20 pages 9 figure
    • 

    corecore