984 research outputs found

    Detection of OD towards the low-mass protostar IRAS16293-2422

    Full text link
    Although water is an essential and widespread molecule in star-forming regions, its chemical formation pathways are still not very well constrained. Observing the level of deuterium fractionation of OH, a radical involved in the water chemical network, is a promising way to infer its chemical origin. We aim at understanding the formation mechanisms of water by investigating the origin of its deuterium fractionation. This can be achieved by observing the abundance of OD towards the low-mass protostar IRAS16293-2422, where the HDO distribution is already known. Using the GREAT receiver on board SOFIA, we observed the ground-state OD transition at 1391.5 GHz towards the low-mass protostar IRAS16293-2422. We also present the detection of the HDO 111-000 line using the APEX telescope. We compare the OD/HDO abundance ratio inferred from these observations with the predictions of chemical models. The OD line is detected in absorption towards the source continuum. This is the first detection of OD outside the solar system. The SOFIA observation, coupled to the observation of the HDO 111-000 line, provides an estimate of the abundance ratio OD/HDO ~ 17-90 in the gas where the absorption takes place. This value is fairly high compared with model predictions. This may be reconciled if reprocessing in the gas by means of the dissociative recombination of H2DO+ further fractionates OH with respect to water. The present observation demonstrates the capability of the SOFIA/GREAT instrument to detect the ground transition of OD towards star-forming regions in a frequency range that was not accessible before. Dissociative recombination of H2DO+ may play an important role in setting a high OD abundance. Measuring the branching ratios of this reaction in the laboratory will be of great value for chemical models.Comment: 6 pages, 6 figures, 3 tables, accepted for publication in A&A SOFIA/GREAT special issu

    Evaluation of InfraRed Thermography Supported by UAV and Field Surveys for Rock Mass Characterization in Complex Settings

    Get PDF
    The InfraRed Thermography (IRT) technique is gaining increasing popularity in the geo-sciences. Although several studies on the use of this technique for rock mass characterization were reported in the literature, its applicability is challenging in complex environments, characterized by poor accessibility, lithological heterogeneity, karst features and disturbances, such as vegetation and human activities. This paper reports the results of specific tests carried out to explore the application of IRT methods, supported by UAV surveys, for rock mass characterization in complex conditions. In detail, a 24-h monitoring was performed on an appropriate case study to assess which type of information can be collected and what issues can be expected. The results of the thermograms were compared with data reported in the literature and discussed. A novel method to detect correlations between the temperature profiles at the air-rock interfaces and the rock mass properties is presented. The main advantages, limitations and suggestions in order to take full advantage of the IRT technique in complex conditions are reported in the final section

    Comparison of remote sensing techniques for geostructural analysis and cliff monitoring in coastal areas of high tourist attraction: the case study of Polignano a Mare (Southern Italy)

    Get PDF
    Rock slope failures in urban areas may represent a serious hazard for human life, as well as private and public property, even on the occasion of sporadic episodes. Prevention and mitigation measures indispensably require a proper rock mass characterization, which is often achieved by means of time-consuming, costly and dangerous field surveys. In the last decades, remote sensing devices such as high-resolution digital cameras, laser scanners and drones have been widely used as supplementary techniques for rock slope analysis and monitoring, especially in poorly accessible areas, or in sites of large extension. Although several methods for rock mass characterization by means of remote sensing techniques have been reported in specific studies, there are very few contributions that focused on comparing the different methods in an attempt to establish their advantages and limitations. With this study, we performed digital photogrammetry, Terrestrial Laser Scanning and Unmanned Aerial Vehicle surveys on a cliff located in a popular tourist attraction site, characterized by complex geological and geomorphological settings, as well as by disturbance elements such as vegetation and human activities. For each point cloud, we applied geostructural analysis by means of semi-automatic methods, and then compared multi-temporal acquisitions for cliff monitoring. By quantitative comparison of the results and validation by means of conventional geostructural field surveys, the pros and cons of each method were outlined in attempt to depict the conditions and goals the different techniques seem to be more suitable fo

    Structure and elastic properties of Mg(OH)2_2 from density functional theory

    Full text link
    The structure, lattice dynamics and mechanical properties of the magnesium hydroxide have been investigated with static density functional theory calculations as well as \it {ab initio} molecular dynamics. The hypothesis of a superstructure existing in the lattice formed by the hydrogen atoms has been tested. The elastic constants of the material have been calculated with static deformations approach and are in fair agreement with the experimental data. The hydrogen subsystem structure exhibits signs of disordered behaviour while maintaining correlations between angular positions of neighbouring atoms. We establish that the essential angular correlations between hydrogen positions are maintained to the temperature of at least 150 K and show that they are well described by a physically motivated probabilistic model. The rotational degree of freedom appears to be decoupled from the lattice directions above 30K

    Dislocation density and graphitization of diamond crystals

    Get PDF
    Two sets of diamond specimens compressed at 2 GPa at temperatures varying between 1060 K and 1760 K were prepared; one in which graphitization was promoted by the presence of water and another in which graphitization of diamond was practically absent. X-ray diffraction peak profiles of both sets were analyzed for the microstructure by using the modified Williamson-Hall method and by fitting the Fourier coefficients of the measured profiles by theoretical functions for crystallite size and lattice strain. The procedures determined mean size and size distribution of crystallites as well as the density and the character of the dislocations. The same experimental conditions resulted in different microstructures for the two sets of samples. They were explained in terms of hydrostatic conditions present in the graphitized samples

    EXPERIMENTAL ANALYSIS OF A HEAT PUMP ASSISTED RECUPERATIVE AIR DEHUMIDIFIER

    Get PDF
    This paper describes the experimental analysis of a heat pump assisted recuperative air dehumidifier. The system consisted of an air-to-air vapor compression heat pump, coupled to the air ducting. Dehumidification was generated by reduction of the air temperature through the evaporator below the dew point, and thus promoting the condensation of the water vapor. Moist air was then warmed up in the condenser, resulting in a lowtemperature low-humidity air stream. Low energy consumption values are achieved in such systems as the latent heat of the water vapor acts as the heat pump own heat source. Occasionally, the compressor heat is also recoverable. The innovative feature of the present analysis was the introduction of an air-to-air plate recuperator, to further promote dehumidification, yet at the expense of greater compressor energy consumption. An experimental apparatus was constructed to perform comparative tests of the dehumidifier operating with and without the recuperator. A closed air circuit was employed, with the air mass flow rate as the controlling parameter of the experiment. Tests were also carried out with an open circuit

    Local Calcium Elevation and Cell Elongation Initiate Guided Motility in Electrically Stimulated Osteoblast-Like Cells

    Get PDF
    BACKGROUND: Investigation of the mechanisms of guided cell migration can contribute to our understanding of many crucial biological processes, such as development and regeneration. Endogenous and exogenous direct current electric fields (dcEF) are known to induce directional cell migration, however the initial cellular responses to electrical stimulation are poorly understood. Ion fluxes, besides regulating intracellular homeostasis, have been implicated in many biological events, including regeneration. Therefore understanding intracellular ion kinetics during EF-directed cell migration can provide useful information for development and regeneration. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the initial events during migration of two osteogenic cell types, rat calvarial and human SaOS-2 cells, exposed to strong (10-15 V/cm) and weak (< or = 5 V/cm) dcEFs. Cell elongation and perpendicular orientation to the EF vector occurred in a time- and voltage-dependent manner. Calvarial osteoblasts migrated to the cathode as they formed new filopodia or lamellipodia and reorganized their cytoskeleton on the cathodal side. SaOS-2 cells showed similar responses except towards the anode. Strong dcEFs triggered a rapid increase in intracellular calcium levels, whereas a steady state level of intracellular calcium was observed in weaker fields. Interestingly, we found that dcEF-induced intracellular calcium elevation was initiated with a local rise on opposite sides in calvarial and SaOS-2 cells, which may explain their preferred directionality. In calcium-free conditions, dcEFs induced neither intracellular calcium elevation nor directed migration, indicating an important role for calcium ions. Blocking studies using cadmium chloride revealed that voltage-gated calcium channels (VGCCs) are involved in dcEF-induced intracellular calcium elevation. CONCLUSION/SIGNIFICANCE: Taken together, these data form a time scale of the morphological and physiological rearrangements underlying EF-guided migration of osteoblast-like cell types and reveal a requirement for calcium in these reactions. We show for the first time here that dcEFs trigger different patterns of intracellular calcium elevation and positional shifting in osteogenic cell types that migrate in opposite directions

    SIMULATION AND EXPERIMENTAL EVALUATION OF AN INNOVATIVE ROTARY COMPRESSOR WITH VARIABLE SPEED DISPLACERS

    Get PDF
    This paper describes preliminary studies of a new rotary compressor with variable speed displacers. Two displacers rotate concentrically, in an annular space, at variable and phased angular velocities, thus creating two variable-volume compression spaces between them. The displacers are individually driven by two concentric shafts. An innovative driving mechanism imposes phased variable angular speeds to the shafts and, consequently, to the displacers, thus providing a volume variation in the gas compression spaces. The driving mechanism also offers a convenient way of capacity control, from zero to 100%, at constant electric motor speed. A mathematical model simulating the performance was developed. A traditional simulation model for positive displacement compressors was employed, where mass and energy conservation equations, in differential form, were applied to the control volumes (two compression spaces). Uniformly distributed thermodynamic properties of gas, varying with time, were assumed for each control volume. Equations describing the volume variation with time, the gas to cylinder wall heat transfer and gas flow through valve ports and leakage passages were also employed. The resulting mathematical model was a system of ordinary differential equations, the numerical integration of which provides the time-history of pressure and temperature of the gas inside the compression chambers. A prototype was also constructed and tested. First performance results are presented, showing the compressor behaviour under different operational conditions

    Formation of hydrogen peroxide and water from the reaction of cold hydrogen atoms with solid oxygen at 10K

    Full text link
    The reactions of cold H atoms with solid O2 molecules were investigated at 10 K. The formation of H2O2 and H2O has been confirmed by in-situ infrared spectroscopy. We found that the reaction proceeds very efficiently and obtained the effective reaction rates. This is the first clear experimental evidence of the formation of water molecules under conditions mimicking those found in cold interstellar molecular clouds. Based on the experimental results, we discuss the reaction mechanism and astrophysical implications.Comment: 12 pages, 3 Postscript figures, use package amsmath, amssymb, graphic
    • 

    corecore