2,553 research outputs found
On the thermal impact during drilling operations in guided dental surgery: An experimental and numerical investigation
In recent years, a major development in dental implantology has been the introduction of patient-specific 3D-printed surgical guides. The utilization of dental guides offers advantages such as enhanced accuracy in locating the implant sites, greater simplicity, and reliability in performing bone drilling operations. However, it is important to note that the presence of such guides may contribute to a rise in cutting temperature, hence increasing the potential hazards of thermal injury to the patient's bone. The aim of this study is to examine the drilling temperature evolution in two distinct methods for 3D-printed surgical dental guides, one utilizing an internal metal bushing system and the other using external metal reducers. Cutting tests are done on synthetic polyurethane bone jaw models using a lab-scale automated Computer Numeric Control (CNC) machine to find out the temperature reached by different drilling techniques and compare them to traditional free cutting configurations. Thermal imaging and thermocouples, as well as the development of numerical simulations using finite element modeling, are used for the aim. The temperature of the tools' shanks experienced an average rise of 2.4 °C and 4.8 °C, but the tooltips exhibited an average increase of around 17 °C and 24 °C during traditional and guided dental surgery, respectively. This finding provides confirmation that both guided technologies have the capability to maintain temperatures below the critical limit for potential harm to bone and tissue. Numerical models were employed to validate and corroborate the findings, which exhibited identical outcomes when applied to genuine bone samples with distinct thermal characteristics
Random Graph-Homomorphisms and Logarithmic Degree
A graph homomorphism between two graphs is a map from the vertex set of one
graph to the vertex set of the other graph, that maps edges to edges. In this
note we study the range of a uniformly chosen homomorphism from a graph G to
the infinite line Z. It is shown that if the maximal degree of G is
`sub-logarithmic', then the range of such a homomorphism is super-constant.
Furthermore, some examples are provided, suggesting that perhaps for graphs
with super-logarithmic degree, the range of a typical homomorphism is bounded.
In particular, a sharp transition is shown for a specific family of graphs
C_{n,k} (which is the tensor product of the n-cycle and a complete graph, with
self-loops, of size k). That is, given any function psi(n) tending to infinity,
the range of a typical homomorphism of C_{n,k} is super-constant for k = 2
log(n) - psi(n), and is 3 for k = 2 log(n) + psi(n)
use of the electronic nose on products of cinta senese pigs
The use of a quartz microbalance based (QMB) electronic nose for feed traceability of fresh and cured fat of Cinta Senese pigs has been evaluated. Thirty-three pigs were fed different feeding during fattening: "three months chestnut" (3-CH), "1 month chestnut" (1-CH) "fed commercial feedstuff" (0-CH). Fresh fat and cured lard of each animal were analysed. Overall data set was analysed by factorial analysis to test if the instruments allowed a satisfactory pattern separation among groups. Afterwards, on the three factors generated by factorial analysis, a GLM procedure was applied to estimate effects such as: feeding type, operative temperature, day of analysis, order within day, layer of the subcutaneous fat. The results showed a clear separation according to feeding regimen in fresh fat only, especially between 1-CH and 0-CH, but also a strong effect of the other sources of variability. Concerning this, the date of analysis had a significant effect on each factor generated by factorial analysis that invalidated the discrimination obtained
Compliant actuation based on dielectric elastomers for a force-feedback device: modeling and experimental evaluation
Thanks to their large power densities, low costs and shock-insensitivity, Dielectric Elastomers (DE)seem to be a promising technology for the implementation of light and compact force-feedback devices such as,for instance, haptic interfaces. Nonetheless, the development of these kinds of DE-based systems is not trivialowing to the relevant dissipative phenomena that affect the DE when subjected to rapidly changingdeformations. In this context, the present paper addresses the development of a force feedback controller foran agonist-antagonist linear actuator composed of a couple of conically-shaped DE films and a compliantmechanism behaving as a negative-rate bias spring. The actuator is firstly modeled accounting for the viscohyperelasticnature of the DE material. The model is then linearized and employed for the design of a forcecontroller. The controller employs a position sensor, which determines the actuator configuration, and a forcesensor, which measures the interaction force that the actuator exchanges with the environment. In addition, anoptimum full-state observer is also implemented, which enables both accurate estimation of the time-dependentbehavior of the elastomeric material and adequate suppression of the sensor measurement noise. Preliminaryexperimental results are provided to validate the proposed actuator-controller architectur
Equation of state at high densities and modern compact star observations
Recently, observations of compact stars have provided new data of high
accuracy which put strong constraints on the high-density behaviour of the
equation of state of strongly interacting matter otherwise not accessible in
terrestrial laboratories. The evidence for neutron stars with high mass (M =2.1
+/- 0.2 M_sun for PSR J0751+1807) and large radii (R > 12 km for RX J1856-3754)
rules out soft equations of state and has provoked a debate whether the
occurence of quark matter in compact stars can be excluded as well. In this
contribution it is shown that modern quantum field theoretical approaches to
quark matter including color superconductivity and a vector meanfield allow a
microscopic description of hybrid stars which fulfill the new, strong
constraints. The deconfinement transition in the resulting stiff hybrid
equation of state is weakly first order so that signals of it have to be
expected due to specific changes in transport properties governing the
rotational and cooling evolution caused by the color superconductivity of quark
matter. A similar conclusion holds for the investigation of quark deconfinement
in future generations of nucleus-nucleus collision experiments at low
temperatures and high baryon densities such as CBM @ FAIR.Comment: 6 pages, 2 figures, accepted for publication in J. Phys. G. (Special
Issue
Updated and new perspectives on diagnosis, prognosis, and therapy of malignant pheochromocytoma/paraganglioma.
Malignant pheochromocytomas/paragangliomas are rare tumors with a poor prognosis. Malignancy is diagnosed by the development of metastases as evidenced by recurrences in sites normally devoid of chromaffin tissue. Histopathological, biochemical, molecular and genetic markers offer only information on potential risk of metastatic spread. Large size, extraadrenal location, dopamine secretion, SDHB mutations, a PASS score higher than 6, a high Ki-67 index are indexes for potential malignancy. Metastases can be present at first diagnosis or occur years after primary surgery. Measurement of plasma and/or urinary metanephrine, normetanephrine and metoxytyramine are recommended for biochemical diagnosis. Anatomical and functional imaging using different radionuclides are necessary for localization of tumor and metastases. Metastatic pheochromocytomas/paragangliomas is incurable. When possible, surgical debulking of primary tumor is recommended as well as surgical or radiosurgical removal of metastases. I-131-MIBG radiotherapy is the treatment of choice although results are limited. Chemotherapy is reserved to more advanced disease stages. Recent genetic studies have highlighted the main pathways involved in pheochromocytomas/paragangliomas pathogenesis thus suggesting the use of targeted therapy which, nevertheless, has still to be validated. Large cooperative studies on tissue specimens and clinical trials in large cohorts of patients are necessary to achieve better therapeutic tools and improve patient prognosis
Linomide blocks angiogenesis by breast carcinoma vascular endothelial growth factor transfectants.
The blocking of angiogenesis provides a novel therapeutic target to inhibit tumour spreading. In this study, we investigated the effect of linomide on angiogenesis induced in vivo by highly angiogenic breast carcinoma cells. The rabbit cornea was used to assess neovascular growth in the absence of a tumour mass. MCF-7 cells stably transfected with the cDNA encoding for vascular endothelial growth factor 121 (VEGF121) (V12 clone) were used to elicit a potent VEGF-dependent corneal angiogenesis. After tumour cell implant, albino rabbits received 100 mg kg(-1) day(-1) linomide for 5 consecutive days. Daily observation of neovascular progression indicated that linomide blocked angiogenesis. The antiangiogenic effect of linomide was apparent within 48 h from the beginning of the treatment and was both angiosuppressive and angiostatic. The block of neovascular growth lasted over 10 days from treatment suspension, and preformed vessels, which had regressed, remained dormant, suggesting the persistence of unfavourable conditions for capillary progression. Linomide (50-200 microg ml[-1]) was not cytotoxic in vitro on resting capillary endothelial cells but blocked endothelial cell replication induced by VEGF. Our data indicate that linomide can efficiently and persistently block VEGF-dependent angiogenesis in vivo in the absence of a growing tumour mass. These data suggest that linomide could be a chemopreventive drug in breast cancer patients and a valuable tool in clinical settings in which metastatic spreading occurs in the absence of a detectable tumour mass
An annotated T2-weighted magnetic resonance image collection of testicular germ and non-germ cell tumors
open7noTesticular cancer is a rare tumor with a worldwide incidence that has increased over the last few decades. The majority of these tumors are testicular non-germ (TNGCTs) and germ cell tumors (TGCTs); the latter divided into two broad classes - seminomatous (SGCTs) and non-seminomatous germ cell tumors (NSGCTs). Although ultrasonography (US) maintains a primary role in the diagnostic workup of scrotal pathology, magnetic resonance imaging (MRI) has emerged as the imaging modality recommended for challenging cases, providing additional information to clarify inconclusive/equivocal US. In this work we describe and publicly share a collection of 44 images of annotated T2-weighted MRI lesions from 42 patients. Given that testicular cancer is a rare tumor, we are confident that this collection can be used to validate statistical models and to further investigate TNGCT and TGCT peculiarities using medical imaging features.openFeliciani G.; Mellini L.; Loi E.; Piccinini F.; Galeotti R.; Sarnelli A.; Parenti G.C.Feliciani G.; Mellini L.; Loi E.; Piccinini F.; Galeotti R.; Sarnelli A.; Parenti G.C
- …